Weniger BG, Papania MJ. Alternative Vaccine Delivery Methods [Chapter 61]. In: Plotkin SA, Orenstein WA, Offit PA, eds. Vaccines, 6th ed. Philadelphia: Elsevier/Saunders; 2013, pp. 1200-1231 (ISBN 978-1-4557-0090-5)

SECTION THREE: Vaccines in development and new vaccine strategies

61

Alternative vaccine delivery methods

Bruce G. Weniger Mark J. Papania

The earliest known route of vaccination was respiratory, by intranasal insufflation of powdered scab material containing variola virus from smallpox patients, reportedly practiced in China as early as the 10th century AD (see Chapters 1 and 32).¹ The cutaneous route for such variolation involved breaking the skin with a sharp instrument, and it was used in India perhaps as early as in China, but it was not documented until the 16th century.² Variolation was supplanted by safer cutaneous application of material from cowpox lesions, the method of "vaccination" known in the 18th century and first published by Edward Jenner.

After 15th-century experiments with hypodermic injection,³ the introduction of the needle and syringe (N-S) in the mid-19th century by Pravaz,^{4,5} Rynd,⁶ and Wood⁷ began a new era in medicine. Pasteur used a Pravaz syringe to inoculate sheep in the famed controlled challenge experiment demonstrating protection against anthrax, after which he honored Dr. Jenner by broadening his predecessor's term—vaccination—to mean the administration of immunizing agents for various diseases, not just smallpox.⁸

With acceptance of the germ theory and resulting sterilization of medical equipment by the early 20th century, and with mass production of needles and glass (later plastic) syringes by mid century, hypodermic injection became the norm for convenient, accurate, and certain administration of most vaccines and many drugs. Regrettably, aseptic practice was ignored in many developing countries, 10,11 and by nonmedical-intravenous-drug users everywhere, 12 leading to widespread iatrogenic and self-inflicted disease transmission during that era once decried as the Injection Century. 13

Other drawbacks of N-S include needlestick injuries to health care workers, ^{14,15} needle-phobia and discomfort for patients facing increasingly crowded immunization schedules, ^{16,17} and the costs and complexity of safe disposal of sharps in the medical waste stream. ¹⁸ In the early 21st century, new targets for disease control and eradication, the expansion of philanthropic efforts to make expensive new vaccines affordable for the world's children, and promising results for novel techniques have stimulated research on vaccine delivery that avoids N-S and may be dosage sparing. Preparedness efforts for threatened pandemics and bioterrorism have also rekindled ^{19,20} past interest²¹ in novel needlefree methods for mass vaccination campaigns.

Existing and potential alternatives to conventional intramuscular (IM) and subcutaneous (SC) vaccination by N-S, as well as by oral ingestion, are classified here into three major categories: cutaneous vaccination, jet injection, and respiratory vaccination. The cutaneous route may be subdivided into classical intradermal (ID) via conventional needle, passive diffusion with or without chemical enhancers or adjuvants, and disruption or penetration

of the stratum corneum by mechanical contact, heat, electricity, or light. Jet injection involves pressurizing liquid into high-velocity streams to reach targeted IM, SC, or ID tissues. Respiratory vaccination delivers airborne particles via the nose or mouth for deposition onto the mucosal surfaces of the upper or lower airways.

Cutaneous vaccination

As mentioned, the skin was one of the first tissues into which variola (smallpox) virus and, later, cross-protecting cowpox virus were introduced to prevent smallpox. This route remains the standard for smallpox vaccine (now containing vaccinia virus) (see Chapter 32), as well as for administering bacille Calmette-Guérin (BCG) to prevent tuberculosis (see Chapter 35).

The cutaneous route has both demonstrated and hypothetical advantages over other delivery methods, as described here and as reviewed by others. ^{23–44} Reduced dosages of various vaccines into the skin, compared with full dosages into muscle or fat, have shown this tissue's dosage-sparing ability, which is useful when vaccines are scarce, or unaffordable in full dosages. The skin is also the least invasive route, and thus, in theory, cutaneous delivery of new antigens is less likely to result in unanticipated serious adverse reactions—for example, intussusception after the first American oral rotavirus vaccine, ⁴⁵ Bell's paralysis of the seventh cranial nerve after the first European intranasal influenza vaccine, ^{46,47} and the occasional abscesses and nerve injury from needle injections into muscle and fat.

Of course, BCG and smallpox vaccines delivered into the skin are not always benign, and rarely they may result in uncontrolled replication and spread of the live antigen, causing serious complications, particularly in immunocompromised patients. 48-50 Nevertheless, skin reactions in general are easier to detect early and access with palliatives or active therapeutic or anti-inflammatory agents than are reactions in deeper tissues.

Finally, successful delivery of antigen by cutaneous vaccination is relatively sure, although not as certain as the "gold standard" of needle injection. And, as with needles, lack of cooperation by some infants and children can be overcome with firm restraint. In contrast, oral doses can be spit out or vomited, and intranasal doses sneezed out or blocked by mucoid or purulent rhinitis. Some pulmonary delivery methods require patient-initiated inhalation (see Figure 61-8E), or they may take from 30 seconds to over 2 minutes to administer by mask or prong (see Figure 61-7A,B,E,F). Such drawbacks may raise doubts about successful delivery of the antigen.

An unstandardized and inconsistent nomenclature to describe vaccination targeting the skin is found in the literature

(eg, cutaneous, dermal, epicutaneous, epidermal, intracutaneous, intradermal, intraepidermal, intraepithelial, patch, percutaneous, skin, topical, transcutaneous, and transdermal). Often, prefixes of Latin (intra, per, trans) or Greek (epi) origin are paired hetero-lingually with root terms for skin of the other etymology, derma (G.) and cutis (L.). Some recent coinage results from commercial intent to claim trade names from among this synonymy. In this chapter, cutaneous vaccination is the preferred term to encompass all methods for delivery of antigen anywhere into or onto the skin. Classical intradermal injection, or just intradermal (ID), is generally reserved for a type of cutaneous vaccination in which a bolus of liquid is deposited into the dermis to raise a visible bleb, as in the traditional Mantoux injection (discussed below).

Anatomy and immunology of the skin

The outermost section of the skin is the epidermis, a stratified squamous epithelium that is usually about 0.1 mm thick but can be from 0.8 to 1.4 mm on the palms and soles (Figure 61-1A). The *stratum malpighii* layer comprises the primary component of the epidermis, and its dividing and growing keratinocytes serve both a structural function—limiting the passage of water

and other molecules—and an immunologic role. Keratinocytes germinate just above the basement membrane, which demarcates the boundary between epidermis and deeper dermis. These cells then grow, flatten, mature, and senesce in increasingly superficial strata until they reach the surface and are sloughed. The main product of this cell is keratinohyalin, a dense lipid that helps form a waterproof barrier. The lateral edges of adjacent keratinocytes are tightly linked by desmosomes, which maintain the strength of the epidermis and also contribute to its resistance to the passage of foreign matter or molecules. ^{51,52}

The topmost horny layer of the epidermis is the *stratum corneum*, comprised of staggered courses of dead keratinocytes—also known as corneocytes—in a lipid bilayer matrix. This stack of 10 to 20 cells, 10 to 20 μ m thick, is the principal obstacle to the introduction of vaccine antigen for cutaneous vaccination.

Below the epidermis and basement membrane lies the dermis, about 1.5 to 3 mm thick, in which fibroblasts, fine collagen, elastic fibers, and most skin organelles, including small blood vessels, lymphatic vessels, nerves, hair follicles, and sweat and sebaceous glands, are found. The subcutaneous tissue below the skin, sometimes referred to as the hypodermis, consists primarily of fat; it varies widely in thickness between different body surfaces and, of course, individuals.

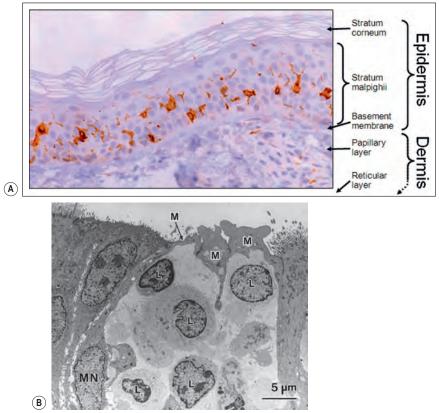


Figure 61-1 Key Antigen-presenting Cells of the Immune System for Cutaneous and Respiratory Vaccination. (A) Activated Langerhans cells (dark stain) in the epidermal Malpighian layer 48 hours after immunization by application of cutaneous patch containing heat-labile enterotoxin (LT) of *E. coli*. Full depth of dermis not shown. (From Glenn GM, Taylor DN, Li X, et al. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403-1406, 2000 [Fig. 3b, p. 1405]; from Glenn GM, Kenney RT, Hammond SA, et al. Transcutaneous immunization and immunostimulant strategies. Immunol Allergy Clin North Am 23:787-813, 2003 [Fig. 1, p. 788]; and from Glenn G, Kenney R. Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol 304:247-268, 2006 [Fig. 1, p. 249].) (B) Transmission electron micrograph of nasal-associated lymphoid tissue (NALT) from excised human adenoids, showing lack of apical cilia at the endothelial lumen (top) of an M cell (M), the M cell nucleus (MN), and the lymphocytes (L) enfolded in the cell's invaginated pocket, which remains contiguous with the extracellular space. M cells sample particulates from the lumen, presenting them to lymphocytes, macrophages, and dendritic cells, which congregate in the pockets. (From Fujimura Y. Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. Virchows Arch 436:560-566, 2000 [Fig. 3, p. 563]; and from Kraal G. Nasal associated lymphoid tissue. In: Mestecky J, Lamm ME, Strober W, et al, eds. Mucosal Immunology. 3rd ed. Amsterdam: Elsevier, 415-434, 2005 [Fig. 23.3, p. 417].)

Skin thicknesses have been mapped in children to identify the histologic suitability of sites for cutaneous vaccination. Equally important is selecting skin sites that are easily accessed so as to minimize disrobing and loss of privacy. In smallpox eradication, the volar surface of the forearm was commonly used because it was quickly accessible, the vaccinator could hold the vaccinee's wrist for stabilization (and to prevent escape), and the scar was easily visible to verify prior vaccination. I

The speed of diffusion of therapeutic substances transcellularly through the dead and living keratinocytes, and via the intercellular channels between them, correlates with smaller molecules (< 500 Da), lower melting points, increased lipophilicity (and correspondingly lower water solubility), higher (saturated) concentrations, and a relative lack of pendant groups that form hydrogen bonds that slow diffusion. ^{31,54}

The specific mechanisms that produce the resulting immune response when vaccine antigen is introduced into the skin are not entirely clear. With stimulation, keratinocytes can produce proinflammatory cytokines (eg, interleukin 1 [IL-1]) and can themselves function as antigen-presenting cells by displaying major histocompatibility complex (MHC) class II antigens (human leukocyte antigen [HLA]-DR), as well as intercellular adhesion molecules (ICAM-1). Epidermal Langerhans cells are believed to play a key role in cutaneous immunization, although dermal dendritic cells and other well-known immune system players, such as CD8+ and CD4+ T lymphocytes, mast cells, and macrophages, also circulate or reside in the epidermis or dermis. $^{36,37,39,56-60}$

The immature Langerhans cells reside like sentinels among the keratinocytes in the epidermis, comprising about a quarter of the skin surface area, 61 where they efficiently capture foreign antigens by phagocytosis or endocytosis. Like dendritic cells in other tissues (see Chapter 5), on activation (see Figure 61-1A) these professional antigen-presenting cells (APC) process the antigen as they migrate to draining lymph nodes. There, now mature, they express high levels of class II MHC molecules, and present the antigen brought from the skin to T-helper (Th) lymphocytes, a critical step for the subsequent immune responses orchestrated by the latter cells.

Delivery by sharp instruments or needles

Traditional vaccination for smallpox

During the more than 200 years of cutaneous vaccination against smallpox (see Chapter 32), a variety of sharp instruments have been used to cut, scratch, poke, and otherwise penetrate into the epidermis (and unnecessarily deeper into the dermis), for inoculation of cowpox or vaccinia virus (Figure 61-2A,B,C,D). In the 18th and 19th centuries, the scarification method involved scratching one or more lines into the skin with a needle, scalpel (lancet), or knife and rubbing vaccine into the resulting lesion. A rotary lancet first described in the 1870s consisted of a shaft attached to the center of a small disk, the opposite (patient's side) of which contained a central tine surrounded by smaller satellite tines. The twirling of the disk in a drop of vaccine on the skin produced much abrasion of the skin and often severe reactions from both vaccine and common bacterial contaminants. In the less traumatic multiplepressure method introduced in the early 1900s, liquid vaccine was placed onto the skin and a straight surgical needle, held tangentially to the skin with its tip in the drop, was repeatedly and firmly pressed sideways into the limb 10 times for primary vaccination, and 30 times for revaccination. 62 Multitine devices have also been used. 63,64

Bifurcated needle

In the 1960s, Benjamin Rubin invented the bifurcated needle (see Figure 61-2D), ⁶⁵ for which Wyeth waived the royalties so that the World Health Organization (WHO) could produce it for smallpox eradication. ^{1,66} The device holds approximately

 $2.5~\mu L$ by capillary action between its tines, which is applied perpendicularly into the skin. This uses one fifth of the typical dose volume needed by earlier multiple-pressure methods, but it requires a higher virus concentration. Its simplicity, portability, and economy greatly facilitated the latter half of smallpox eradication, particularly in Asia and East Africa.

Tuberculosis vaccination

The bacille Calmette-Guérin vaccine for the prevention of disease from *Mycobacterium tuberculosis* was originally administered orally in the 1920s (see Chapter 35). Safety concerns prompted a shift to cutaneous administration by ID needle injection (1927), ⁶⁷ and later multiple puncture (1939), ^{68–71} scarification (1947), and multi-tine devices (Figure 61-2, images A, C, G, F), ^{64,72,73} as described earlier for smallpox vaccine. BCG has also been delivered cutaneously by jet injectors⁷⁴ and bifurcated needles.⁷⁵

Mantoux method

The needle technique for classical intradermal injection, as used for BCG, was developed in the early 20th century by Felix Mendel76 and separately by Charles Mantoux77 for the administration of tuberculin (now replaced by purified protein derivative) used for diagnosis of tuberculosis infection. Now referred to as the Mantoux method, this procedure has become the common route for ID injection of various antigens (see Figure 61-2G). A short-bevel, fine-gauge needle, usually 27 gauge (0.016 inch, 0.4060 mm diameter), is inserted, bevel up, at a 5 to 15-degree angle into slightly stretched skin, often the volar surface of the forearm. 78 The tip is advanced about 3 mm until the entire bevel is covered. Upon injection of fluid, proper location of the bevel in the dermis creates a bleb, or a wheal, as the basement membrane and epidermis above are stretched by the fluid. Leakage onto the skin indicates insufficient penetration to cover the bevel. Failure to produce a bleb indicates an improperly deep location of the fluid in the subcutaneous tissue. Drawbacks to the Mantoux method for mass vaccination campaigns are the training, skill, and extra time needed to accomplish it correctly.

Reinventing the wheal

The potential dosage-sparing effect of ID vaccination, reducing the amount of antigen needed by up to 80% (by reducing the volume from 0.5 to 0.1 mL), has prompted renewed attention to this route because of concerns about emerging threats such as pandemic influenza, severe acute respiratory syndrome (SARS), and bioterrorism, which may leave populations vulnerable because of insufficient vaccine supply $^{\hat{23},\hat{24}}$ Both old and new techniques can more easily achieve the classical intradermal injection of the Mantoux method, depositing the injectate into the skin to produce a raised bleb or wheal of temporary induration. Since the 1960s, multiuse-nozzle jet injectors (see "Jet injection", later) have allowed ID delivery of smallpox, BCG, and other vaccines by using these specialized nozzles (see Figure 61-2E). 66,79-81 Some adaptations of modern disposablesyringe jet injector technology also achieve classical intradermal injection, namely the Tropis⁸² and the Bioject ID-Pen⁸³ (see Figure 61-2J,K, and Table 61-1).

Mini-needle

To circumvent the amount of skill and time needed for successful Mantoux injection, Becton, Dickinson (BD)⁸⁴ developed a prefilled glass syringe with a staked, 30-gauge (outer diameter [OD], ~ 0.305 mm) mini-needle, which projects only 1.5 mm beyond its depth-limiting hub for intuitive perpendicular insertion into the skin (see Figure 61-2H). \$85,86 Termed the Soluvia Micro-Delivery System, it was licensed exclusively by Sanofi Pasteur of the contraction of the skin (see Figure 61-2H).

1203

Figure 61-2 Devices for Smallpox Delivery and Classical Intradermal Vaccination. (A) Vaccinostyle (no longer used for smallpox vaccine), which scratches the skin before or after applying liquid vaccine. (B) Rotary lancet (no longer used for smallpox vaccine), twirled between thumb and fingers to abrade skin. (C) Surgical needle (no longer used for smallpox vaccine), pressed parallel to skin in multiple-pressure method. (D) Pronged end of bifurcated needle (full length, 5 to 7 cm), the current preferred device for smallpox vaccination, holds between its tines approximately 2.5 µL fluid by capillary action. (E) Intradermal nozzle of Ped-O-Jet⁶⁰⁷ multiuse-nozzle jet injector (no longer used, see Figure 61-5C) (Keystone Industries), showing 0.127-mm-diameter orifice bored into inset sapphire. Recessed cone in the nozzle directs jet stream across a short air gap at ~45-degree angle into skin. (F) "Kuchiki needle" multi-tined applicator for administration of Japanese BCG vaccine by a method termed percutaneous delivery. 72 (G) Traditional Mantoux method for creating intradermal wheal using 26-gauge hypodermic needle and conventional 1-mL syringe. (H) Prefilled version of Soluvia mini-needle intradermal syringe (BD Micro-Delivery System; Becton, Dickinson and Co.⁸⁴) used for intradermal delivery of Sanofi Pasteur⁸⁷ brands of inactivated influenza vaccine (Intanza, IDflu, ⁹⁴ Fluzone Intradermal⁹⁷). (From Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 30:523-538, 2012 [Fig. 3, p. 526].) (H inset) The 30-gauge staked mini-needle projects 1.5 mm beyond its hub to limit the depth of injection upon perpendicular insertion into the skin. Marketing of vaccine-device combination product approved in European Union in 2009 and in United States in 2011. (I) Investigational adaptor for conventional tuberculin syringe-needle for quick and consistent Mantoux intradermal injection (SID Technologies, 107 West, 111 PATH 108), to be used for rabies vaccination in the developing world, 108 among other indications. 112 The fixed gap of < 1.0 mm underneath the "Ski-tip" guide manipulates the skin to optimize needle placement regardless of bevel orientation. (J) Investigational new version of Tropis needle-free intradermal jet injector (PharmaJetes). (J inset) Unfolded cocking "wings" are used to compress its metal spring between injections. Original model cleared by FDA for US marketing in 2011. (K) Investigational Bioject ID Pen needle-free jet injector for intradermal delivery of 0.1 mL (0.05-mL-dose model not shown) (Bioject Medical Technologies⁸³). Powered by metal spring cocked with built-in lever. Disposable polypropylene spacer on disposable syringe creates the desired air gap to weaken the jet stream for intradermal delivery. (Figure 61-2A, B, C, E, G, courtesy of James Gathany, Greg Knobloch [CDC Photographic Services]; 61-2D, I, courtesy of Bruce G. Weniger; 61-2F, courtesy of Japan BCG Laboratory;73 61-2H, courtesy of Sanofi Pasteur;27.87 61-2J, courtesy of PharmaJet;82 61-2K, courtesy of Bioject Medical Technologies.83)

The Soluvia's first major clinical trial (although unidentified in the publication) was for the ID trial arm using an investigational GlaxoSmithKline (GSK) influenza vaccine. §§ Later, Sanofi Pasteur undertook a series of clinical trials with its own trivalent, inactivated influenza vaccine, §§-93 which led to marketing approval in Europe in 200994 for ID delivery of its Intanza and IDFlu products. §§ These contained either 9 µg of viral hemagglutinin per strain per 0.1 mL for adults through age 59, 92,93,96 or a full (non–dosage sparing) 15 µg for those 60 and older. §§-91

In the US trials cited in the product insert, 97 Sanofi Pasteur's US-made Fluzone Intradermal product, containing $9\,\mu g$ per strain, was found to induce geometric mean titers (GMTs) of hemagglutination-inhibiting antibody that were non-inferior to those of control patients receiving conventional Fluzone by the IM route with $15\,\mu g$ per strain. In 2011, the US Food and Drug Administration (FDA) licensed the vaccine and its unique pre-filled delivery system, with an indication that it be used only for patients 18 to 64 years of age. Several other countries (eg,

Canada, Australia, New Zealand) have also licensed a Sanofi influenza vaccine in the Soluvia mini-needle delivery system.

A plastic, non-prefilled, empty, sterile version of the Soluvia mini-needle syringe is potentially available to others for enduser filling. 98 Detaching its hub exposes the full needle length to access conventional vials. Potential applications include post-exposure rabies prophylaxis in the developing world, for which a clinical trial demonstrated protective seroconversion comparable to a full dosage by the IM route⁹⁹ (see "Other conventional vaccines", later), as well as delivery of protein-based therapeutics, 100 among others. 40

A 34-gauge (OD, ~ 0.178 mm) version of the Soluvia, without the bulky plastic emballage required to shield the needle for health workers, is sized for preclinical animal experiments. These produced good immune responses to anthrax recombinant protective antigen (rPA), $^{101-103}$ conventional hemagglutinin and plasmid DNA antigens for influenza, 104 and live recombinant yellow fever vector for Japanese encephalitis vaccines. 105 Rabbits immunized intradermally and challenged with about 100 LD $_{50}$ of Bacillus anthracis spores had survival rates (no adjuvant, 100%; aluminum salt adjuvant [alum], 100%; CpG, 83%) that were identical to those of IM-immunized controls. 101 Rhesus macaques were protected from aerosol challenge with lethal dosages of anthrax, botulism, plague, and staphylococcal pathogens or toxins. 103

Adapter for Mantoux injection

A novel syringe adapter (see Figure 61-21), designed for quicker insertion and improved consistency over the traditional Mantoux technique (see Figure 61-2G), guides the needle to its appropriate position in the skin to produce the desired bleb. In human trials conducted by PATH (once known as the Program for Appropriate Technology in Health), 106 the adapter's Luer interface was fitted to conventional 1.0-mL syringe, and injections of 0.1 mL produced desired blebs in 100% of 20 bevel-up and 20 bevel-down injections, yielding mean diameters of 9.3 mm, ± 0.9 mm SD (range, 7 to 12 mm), with ID deposition confirmed by ultrasound in all patients. 107-109 The device was developed by SID Technologies, 110 with financial and technical support from the Centers for Disease Control and Prevention (CDC), West Pharmaceutical Services, 111 and PATH, 106,112 which has rights in the developing world for rabies vaccination and other applications. At licensure, West will manufacture and market the adapter in the United States and other developed countries.

Other intradermal vaccines

In addition to smallpox and BCG, and a combined BCG-and-smallpox vaccine, 113,114 over a dozen other vaccine types have been administered intradermally.

Influenza

A substantial literature documents equivalent immunogenicity, occasional superiority, and, less commonly, lower responses to influenza vaccination by the ID route using needle-syringe compared with larger dosages by the SC and IM routes.¹⁷⁴ Studies took place in two eras. The first started in 1937 with a report by Thomas Francis (of Salk polio vaccine trial fame)¹¹⁵ and extended until 1979, when the last two of the 1976-77 season's influenza A/New Jersey/76 (swine flu) papers^{116,117} were published. Of these, 19 indicated equivalence or superiority,^{115,116,118-134} but not with the sample sizes and analytical rigor of modern clinical trials. Six studies found the ID route less immunogenic than the SC or IM route for some or all of the antigens studied,^{117,135-139} but some of these had attempted 10 to 1 dosage sparing.

When the ID route was compared with either the IM or the SC route using identical amounts of reduced antigen, the results conflicted with those of mid-century trials using the whole-cell products of that era. Bruyn and colleagues found GMTs in children receiving 0.2 mL intradermally of influenza vaccine to be

higher than in those receiving the same dosage subcutaneously,121 as did Davies and coworkers140 and Tauraso and colleagues131 administering 0.1 mL by both routes. When administering by the ID route, one-tenth (0.1 mL) the SC dose (1.0 mL) in varying dilutions below the labeled dosage of 800 chick cell agglutinating (CCA) units/mL, Stille and coworkers also found greater ID responses, but only when the SC dosage was low, at 8 or 0.08 CCA (ID dosage: 0.8 and 0.008, respectively). 127 In contrast, SC responses exceeded ID ones when the standard SC dosage was used or reduced by only one log (80 CCA; ID, 80 and 8 CCA, respectively). This suggested a linear ID dosage-response curve, but a sigmoid SC one, which favored the ID route at the lowerdosage end. On the other hand, when identical reduced dosages for a new shifted "Asian" strain were given by the two routes (80, 40, or 20 CCA, compared with 200 per full 1.0 mL), both McCarroll and colleagues, 141 studying hospital employees 18 to 65 years of age, and Klein and coworkers, 142 studying infants 2 months to 5 years of age, found little difference in responses between the ID and SC routes. McCarroll speculated that the ID superiority in earlier studies was the result of an anamnestic effect not present that season. Klein simply doubted any ID superiority when equal volumes are used.

Regarding systemic reactions, among 101 infants from 2 months to 2 years of age receiving 0.1 mL of influenza vaccine in the study by Klein and Huang, febrile reactions were reported among 34.7% (17/49) in the intradermal group and only 19.2% (10/52) in the SC group getting the same reduced dosage. 142 Similarly, local reactions of small areas of erythema and induration with slight tenderness and itching within 2 to 3 days were described for "all" intradermal participants (ages 2 month to 5 years, N = 96), whereas only 2 of 94 children vaccinated by the SC route had local pain and induration. Considering the entire reduced-dosage, ID influenza literature, this route might be considered when antigen shortages and distributive equity demand the use of the lower end of the dosage-response curve, where ID may outperform the SC or IM route. The increased reactions described in these whole-virus studies would perhaps be mitigated by use of today's less reactogenic split-virus products.

Twenty-five years after the final mid-20th-century ID influenza studies, two papers were published simultaneously in 2004,88,143 soon after several national shortages144 had revived interest in dosage sparing. 145,146 Among 240 hits on literature searches through May 2011 for intradermal influenza vaccination studies published since 1950, Young and Marra¹⁴⁷ culled 205 that reported on nonseasonal vaccines (such as avian H5N1 or pandemic H1N1), or were duplicates or otherwise inappropriate. From the remaining 35, they excluded 22, which were either animal studies, were nonrandomized, used obsolete whole-virus antigen, or assessed immunity outside the selected window of 21 to 28 days after vaccination. They comprehensively compared the remaining 13 reports of split-virus studies, all from 2004 onward among adults 18 years of age and older.88-93,96,143,148-152 As in 20th-century reports, Young and Marra¹⁴⁷ found dosages 40% to 80% smaller by the ID route in most studies to be comparably immunogenic with full 15-µg dosages given intramuscularly (seven of eight in the 18- to 60-year age range, four of six trials among those older than 60 years). ID superiority was found (without dosage sparing^{90,103}) in the remaining two studies in the older group. As usual, local reactions were consistently more frequent by the ID route.

Among published 21st-century ID influenza studies not included in the Young and Marra¹⁴⁷ review was a study of children in Hong Kong given 2005–06 seasonal trivalent vaccine (Fluarix, GSK).¹⁵³ It found 0.1 mL ID dosages to be comparably immunogenic to full 0.5-mL IM ones, with increased but tolerable induration and erythema after ID delivery. Another study in Texas administered investigational, monovalent avian A/H5N1 antigen to adults in dosages of 3 and 5 µg by the ID route, and 15 and 45 µg by the IM route.¹⁵⁴ All dosages less

than 45 μg by either route induced very poor responses, whereas 45 μg by the IM route induced a fourfold titer rise and titers of 40 or greater in 56% after two doses.

One multicenter study encompassed a range of four dosages of hemagglutinin per vaccine strain of the 2004–05 formulation of Fluzone, comparing 15 μg by IM needle, 9 and 6 μg intradermally by Soluvia mini-needle syringe, and 3 μg by Mantoux injection. 155 By GMT, the 6- and 9- μg ID doses were non-inferior to the IM control for all three strains, but the 3- μg ID dose was non-inferior only for the A/H3N2/Wyoming strain. Other studies of the Fluzone ID vaccine delivered by Soluvia mini-needle $^{89-93}$ were described above (see "Reinventing the wheal", earlier).

When low-dosage ID vaccine is compared only with full-dosage by the IM route, it cannot be ascertained whether a low dosage into the muscle (usually with fewer local reactions) would have performed as well. Belshe and colleagues addressed that question by adding a third arm to a trial of low-dosage influenza vaccine by traditional Mantoux injection by the ID route, versus control. They found that low dosages by either the ID or the IM route were almost as immunogenic as the full-dosage IM control. 149

Poliomyelitis

In Salk's first clinical trials with inactivated polio vaccine, it was administered by the ID route, ^{156,157} which was routinely used for millions of Danes in the mid 1950s, ^{158,159} and responses in studies were good up to the early 1990s. ^{160–164} As polio eradication nears its goal, it will be necessary to remove from circulation the live Sabin strains of oral polio vaccine (OPV), with their propensity to revert to virulence and to circulate from vaccinees to others, and to replace them with injectable, inactivated polio vaccine (IPV). However, the latter vaccine in full 0.5-mL dosages costs about 20 times as much per dose as OPV, promoting a search for cost-saving strategies that also avoid the introduction of needles into the polio eradication program. ¹⁶⁵

Recent clinical research in Oman sponsored by WHO and others found seroconversion rates equivalent to full dosages given intramuscularly when IPV was delivered intradermally by needle-free jet injectors in 0.1 mL dosage-sparing volumes into the skin to infants at 2, 4, and 6 months of age, ¹⁶⁶ but GMTs were consistently lower. At the earlier ages of 6, 10, and 14 weeks, studied in Cuba, the ID responses were somewhat lower, perhaps from maternal antibody interference. ¹⁶⁷ A study in the Philippines compared one-fifth dosages by Mantoux injection with full dosages by the IM route at 6, 10, and 14 weeks of age, finding inverse titers of 8 or greater to all three types in 99% to 100% of all participants, concluding that the reduced-dosage ID route was non-inferior to the IM route. ¹⁶⁸

An Indian study of older children, 6 to 9 months of age, using a different investigational jet injector for ID delivery, deemed more than half of the injections "inadequate" because of a wheal diameter of less than 3 mm, or because more than a "small drop" of vaccine remained on the skin surface. Overall, seroconversion rates and GMTs to all polio types were lower by reduced-dosage by the ID route than by full IM dosages, especially for such "inadequate" injections. Another study in the Netherlands of the same device is underway. More are planned.

Yellow fever

The ID route was used extensively for the live attenuated yellow fever French neurotropic vaccine, which was given by ID scarification in the 1940s and 1950s in Francophone Africa (see Chapter 38).¹⁷¹ The 17D strain showed both good¹⁷² and poor¹⁷³ immune responses when jet-injected by the ID route. A recent review discussed evidence for dosage-sparing equivalence in skin using one-fifth the usual dosage.¹⁷⁴

Other conventional vaccines

Inactivated vaccines with good immune responses after ID injection include typhoid¹⁷⁵ and rabies.^{99,176–183} The latter has been used widely for dosage-sparing purposes in the developing world.^{184,185}

Generally good results have been reported for ID hepatitis B,^{186–192} with exceptions when antigen mass was prepared by a 10 to 1 reduction instead of the more common 5 to 1 reduction for the ID route,¹⁹³ in infants,^{194–196} and with recombinant vaccine.^{197–199} A recent meta-analysis among five comparable, randomized clinical trials totaling 757 subjects (in 234 published studies) found a "slight" (14%) decrement in seroprotection rates for hepatitis B by the ID route compared with the IM route.²⁰⁰ In contrast, another meta-analysis found hepatitis B by ID route somewhat more immunogenic than by IM route among dialysis patients.²⁰¹

For meningococcal disease, one 1972 paper on group A vaccine²⁰² and unpublished data posted at ClinicalTrials.gov for a 2002 to 2004 study of the modern, non-protein-conjugated A/C/Y/W-135 combination (Menomune)²⁰³ found good results. These two are the only reported studies of any polysaccharide vaccines (including *Haemophilus influenza* type b, and conventional or conjugated pneumococcal) by the cutaneous route.

Mixed results for the ID route have been reported for cholera²⁰⁴ and hepatitis A vaccines.^{205,206} Other nonliving antigens studied rarely by this route include diphtheria-tetanus-pertussis, ^{207,208} tetanus, ^{209,210} tetanus-diphtheria, ²¹¹ tetanus-typhoid, ^{212,213} tickborne encephalitis, ^{214,215} and Rift Valley fever.²¹⁶ Similarly mixed results were found for live measles vaccines by the ID route. ²¹⁷⁻²²⁹

Investigational vaccines

In the mid to late 2000s, the ID route was pursued for a wide variety of investigational vaccines, including dengue, ²³⁰ human immunodeficiency virus (HIV), ²³¹ malaria, ²³² and tuberculosis. ²³³ The ID route—as well as the IM—had led to the serendipitous discovery in an influenza model ²³⁴ that viral genes encoded into bacterial DNA could express their protein antigens in vivo, a seminal event in the modern era of recombinant nucleic acid vaccinology. ²³⁵ Gene proto-antigens to prevent influenza, ²³⁶ HIV or acquired immunodeficiency syndrome (AIDS), ^{237,238} small-pox, ²³⁹ and many other diseases are being inserted into both naked DNA/RNA²⁴⁰ and various vectors such as modified vaccinia Ankara virus, for delivery by the ID route. ID jet injection has been used for immunomodulators such as interferon. ²⁴¹

Novel methods to deliver antigen into the skin

Various commercial patch delivery systems developed since 1981 have demonstrated the ability of certain therapeutic agents (eg, scopolamine, nitroglycerin, clonidine, estradiol, fentanyl, nicotine, testosterone) to diffuse passively into bare, untreated skin without the use of the active technologies or enhancers described in the following paragraphs. However, such passive diffusion usually works only for small molecules with certain physical characteristics. Thus, there are but a few animal models of immunization onto bare, untreated skin. However methods to facilitate antigen delivery to the epidermis involve painlessly stripping, abrading, scraping, piercing, vaporizing, shocking, vibrating, bombarding, and otherwise permeabilizing the barrier of the stratum corneum. Some methods combine several processes. These have been detailed in reviews by others. P129,31,33,35-37,39-43,54,60,245-248

Stripping and abrading

Tape and friction

A variety of simple tools have been used to remove the stratum corneum. Common cellophane adhesive tape may be applied to the skin and pulled away, carrying away dead keratinocytes with each repetition. Such tape-stripping has been shown to enhance cytotoxic-T-cell and cytokine immune responses on subsequent application of various antigens and adjuvants to

the skin in mice. ^{249–255} Similarly, rubbing gauze, emery paper, electrocardiographic (ECG) pads, or pumice on the skin removes cells by their abrasive effects, and this has been found to enhance immune responses in humans. ²⁵⁶ Application of cyanoacrylate glue followed by stripping the skin to apply antigen to the exposed hair follicles has been described, ²⁵⁷ but its practicality has been questioned. ³⁷

Skin preparation system and transcutaneous immunization

Among methods that strip the skin, perhaps the most advanced is one that combines this step with the use of a remarkably potent adjuvant, the heat-labile enterotoxin (LT) of *Escherichia coli* (see "Bacterial exotoxins", later). This effort was originally championed by Gregory M. Glenn, first at the Walter Reed Army Institute of Research, then at Iomai Corporation, and later at Intercell. ²⁵⁸

The vaccinator or the patient holds against the skin a device, the Skin Preparation System, developed by Ideo (Figure 61-3A). ²⁵⁹ With the push of a button and the pull of a tab, a controlled pressure is applied to a sandpaper strip, which gently abrades and removes about 25% of the stratum corneum. ^{260,261} Then, a patch containing LT as antigen alone, or containing LT as an adjuvant for another antigen, is applied to the skin; the process is called *transcutaneous immunization*. ^{262–265} LT alone is intended to induce immunity against enterotoxigenic *E. coli* (ETEC), the cause of traveler's diarrhea, or against *Vibrio cholera*, with ²⁶⁶ or without ^{267,268} ETEC colonization factor.

An initial, randomized, blinded field trial among travelers to Guatemala and Mexico found 75% efficacy for the patch with LT alone in protecting from moderate to severe diarrhea. ²⁶⁹ In 2010, Intercell reported mixed results from two follow-up field studies. ^{270,271} In a pivotal phase 3 trial for travelers diarrhea

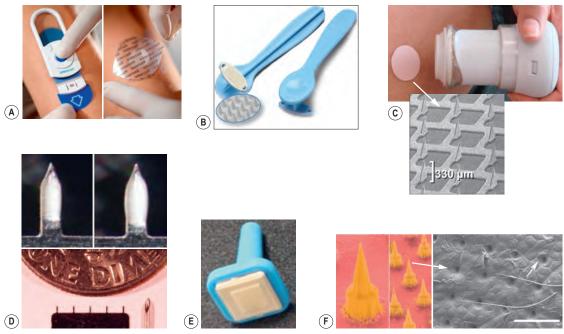


Figure 61-3 Investigational Devices for Disrupting Stratum Corneum by Friction or by Penetration with Uncoated or Coated Solid Microneedles, for Potential Cutaneous Vaccination. (A, left) Investigational Skin Preparation System (SPS) for transcutaneous immunization (Intercell AG, 258 originally developed by Iomai Corporation). Blue push-button requires the correct amount of abrasion pressure on the stratum corneum by a sandpaper-like strip pulled with the blue tab. (A, right) After the skin is abraded, the vaccine or adjuvant-containing patch is applied within guide marks of the temporary dye (not shown) left by the SPS to indicate the pretreated area. (Photographs by Andi Bruckner [www. andibruckner.com] for Intercell AG, with permission; from Kim YC, Jarrahian C, Zehrung D, et al. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 351:77-112, 2012 [Fig. 4a2-3, p. 97]). (B) 3M Microchannel Skin System is an uncoated microneedle device licensed in the United States in 2011 and elsewhere "to create microchannels in the skin" for dermatologic or other medical use. 295,296 The device contains 351 solid microneedles (B inset). 297.298 (C) Investigational Zosano Pharma ZP Patch (formerly Macroflux) applicator and patch. (C, inset) Scanning electron microphotograph of titanium tines, $330 \, \mu m$ in height, embedded in the patch, coated with drug or antigen, and applied into the skin. (From Sachdeva V, Banga AK. Microneedles and their applications. Recent Pat Drug Deliv Formul 5:95-132, 2011 [Fig. 2B, p. 105]. Inset from Matriano JA, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63-70, 2002 [Fig. 1B, p. 64].) (D, top) Investigational BCG-coated microtines after 6 (D, left) and 9 (D, right) coating cycles (Georgia Institute of Technology³²³), by brightfield microphotography. (D, bottom) An array of five such microtines compared with a 26-gauge hypodermic needle and a US 10¢ coin, 18 mm in diameter. (From Hiraishi I, Nandakumar S, Choi S-O, et al. Bacillus Calmette-Guérin vaccination using a microneedle patch. Vaccine 29:2626-2636, 2011 [Figs. 1 and 3Aii,iii, pp. 2629, 2630].) (E) Investigational Press&Patch fingerthumb device for applying (< 30 sec) the solid Microstructured Transdermal System (sMTS) containing drug-coated or uncoated microneedles. 3M Corporation. 297.319-321.294 (**F, left,** and **F, middle**): Investigational Nanopatch 347 microneedle array of silicon, after application to mouse skin. Microprojections are 30 µm wide at base and from 65 to 110 µm in height, and sputter-coated with 100 nm of gold. The red coating of antigen/ adjuvant elutes to reveal the original gold coating. (From Prow TP, Chen X, Prow NA, et al. Nanopatch: targeted skin vaccination against West Nile virus and Chikungunya virus in mice. Small 6:1776-1784, 2010 [Fig. 1-g/h, p. 1777].) (F, right): Cryogenic scanning electron micrograph of projection holes produced in mouse ear skin by Nanopatch. White arrow shows the indentation left by the shoulder on the microprojection. Scale bar, 100 µm. (From Crichton ML, Ansaldo A, Chen X, et al. The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. Biomaterials 31:4562-4572, 2010 [Fig. 3D, p. 4565].) (Figure 61-3A, left and right, Andi Bruckner, Intercell AG;43 61-3B, E, 3M Corporation;294 61-3C, Zosano Pharma;291 61-3C inset, Zosano Pharma;305 61-3D, top left and right, Georgia Institute of Technology;323 61-3D bottom; 335 61-3E, 3M Corporation; 294 61-3F, University of Queensland/Vaxxas. 351,344)

(N=2,036), again in Guatemala and Mexico, the trial's primary target endpoint of greater than 60% efficacy against moderate to severe ETEC diarrhea was not met, finding only about 35% protection. Nor was there an effect on the frequency of all causes of diarrhea. However, there was a 60% reduction in the incidence of LT-positive diarrhea of all degrees of severity, along with a significant reduction in duration and severity of all diarrhea causes. The patch also induced measurable immune responses and was well tolerated. 270,272

In a smaller phase 2 trial in India (N = 723),²⁷¹ the LT patch also did not reach its targeted endpoint, perhaps because of a low attack rate (about 1%) for LT-positive ETEC. As a result of these two trials, Intercell discontinued work on the LT patch for traveler's diarrhea but still pursues its use with the Skin Preparation System device for other applications.

Applying the Intercell LT patch near the site of injection of parenteral influenza vaccine (an application referred to as a vaccine-enhancement patch) was found to improve hemagglutination inhibition [HI] titers in the serum and mucosa of both young and aged mice, ^{273,274} and to increase the HI titer or show an improving trend for adult volunteers older than 60 years. ²⁷⁵ In May 2011, a partnership between Intercell and GSK²⁷⁶ began enrolling 300 volunteers for a study to compare the patch with ASO3 adjuvant in boosting responses to pandemic H5N1 influenza vaccine. ²⁷⁷

In preclinical studies of other applications, use of LT or a structurally similar cholera toxin as cutaneous adjuvants resulted in improved immune responses or challenge protection in animal models for tetanus, ²⁷⁸ anthrax, ^{279,280} malaria, ²⁸¹ Helicobacter pylori, ²⁸² and Shiga toxin–producing strains of enterohemorrhagic *E. coli*. ²⁸³

In regard to safety, early clinical trials found no serious reactions, ²⁶⁷ but pruritus and maculopapular rash at the patch site were found in 13%, ²⁷⁵ 74%, ²⁶⁶ or 100% ²⁶⁸ of patients exposed to LT-containing patches for 6 hours, and in one study 17% of rashes progressed to vesicle formation. ²⁶⁸ Delayed-type hypersensitivity contact dermatitis was observed when using recombinant colonization factor. ²⁶⁶ Later clinical trials found the LT patch to be "well tolerated and consistent with previous studies" ^{270,272}

Microrasps

Other methods take advantage of low-cost fabrication techniques adapted from the microelectronics industry to convert silicon, metal, or other material into arrays of micrometer- to millimeter-size microrasps designed to abrade the stratum corneum (as distinct from creating holes in it; see "Poking and piercing", later). ^{31,35,39-41,99,284} One example is the *microenhancer array* (MEA, also known as Onvax), an investigational technology that scrapes the skin before or after topical application of the antigen or therapeutic agent. ^{84,285} The MEA consists of a square or round chip containing about 1-cm² area of silicon or plastic microprojections mounted on a finger-held applicator. ^{22,101,247}

Preclinical studies of the MEA device using mice inoculated with hepatitis B surface antigen (HBsAg) or DNA plasmids encoding firefly luciferase found similar or greater immune responses or light emission, respectively, compared with control IM and experimental ID injections. Anthrax rPA with alum or CpG adjuvants applied with the MEA device to mouse skin produced equivalent or better immune responses than IM controls (although not as good as an ID microneedle), whereas immune responses and challenge survival were significantly less among MEA-immunized rabbits compared with IM controls. 101 Among cynomolgus monkeys vaccinated by six "swipes" of the MEA, with SC and 34-gauge, microneedle-based ID controls, all animals seroconverted to an investigational recombinant Japanese encephalitis vaccine. 105 Those vaccinated by swiping the MEA through a drop of vaccine already on the skin showed neutralizing antibody responses in the same range as the SC controls, whereas applying vaccine after the abrasion appeared to be less effective.

A clinical trial of the MEA measured transepidermal water loss (TEWL) as a surrogate indicator for removal of the stratum corneum after each of five consecutive swipes across the same site on the volar forearm of volunteers. Projection heights of 100, 150, and 200 µm showed steadily increasing rates of TEWL, with the tallest projections producing the greatest water loss. Control swipes with fibrous and sandpaper ECG pads showed little or no TEWL. ²⁸⁵ A human trial, however, in which rabies vaccine was applied before or after four "rubs" of the device over four separate deltoid skin sites did not detect any immune response after three dosings on days 0, 7, and 21. ⁹⁹

Shaving and brushing

The razor and the brush can also remove layers of the stratum corneum. In a clinical trial of adenovirus vectors encoded to express influenza hemagglutinin antigen, the abdominal skin of 24 adults was shaved with a disposable, twin-blade razor, followed by "gentle brushing with a soft-bristle toothbrush for 30 strokes" and application of the antigen with an occlusive Tegaderm patch. 286 Two doses 28 days apart at the highest dosage level produced fourfold rises in HI titer with 67% of the cutaneous vaccines (there was no control group receiving conventional parenteral delivery of either the recombinant vaccine vector or a licensed inactivated influenza vaccine). Occasional mild erythema at the abdominal site was reported in 61% and rash or itching in 39% of patients.

This same research team, ²⁸⁷ studying mice, substituted an electric trimmer for shaving but otherwise used similar brushing to demonstrate that topical application of nonreplicating *E. coli* vectors overproducing antigens for *Clostridium tetani* and *B. anthracis* were immunogenic. ^{288,289} Control animals demonstrated that depilation alone had little effect; what made the difference was the mild brushing, which produced minimal irritation (Draize score, 1). ²⁹⁰ Others studying Japanese encephalitis vaccine in an animal model supplemented skin shaving with a commercial depilatory cream, followed by occlusion of the site with an impermeable covering. ²⁹¹ The practicality of such steps in routine immunization of humans is uncertain.

Poking and piercing

As with cutaneous vaccination in general, a diverse terminology is applied to microscopic projections for perforating the superficial skin to deliver the drug. 31,41,43,247,248,292,293 In addition to the most common term *microneedles*, terms such as *microblades*, *microknives*, *micropins*, *microtines*, *microtubes*, and *nanopatches* have been used. This chapter uses *microneedles* for the broad category of all such projections shorter than 1,000 µm, reserving *mini-needles* for those of 1 mm or longer, whether solid or hollow (see "Mini-needles" and "Microrasps", earlier). The following sections divide microneedles into functional subcategories.

Uncoated microneedles

Earlier, we described methods in which vaccine or drug is applied to the site after it is prepared. The 3M Corporation²⁹⁴ developed an uncoated microneedle device to prepare the skin by perforating it. Although not licensed (or even intended) for vaccine or drug, its 3M Microchannel Skin System of microneedles appeared on the US market in 2011 as a "pretreatment method for professional medical or cosmetic dermatologists to create microchannels in the skin" (see Figure 61-3B).^{295,296} Each application creates 351 holes through the stratum corneum into the epidermis.^{297,298} Other investigational technologies for uncoated microneedles are the MicroCor,^{299,300} the Functional MicroArray patch,³⁰¹ and the Micro-Trans.³⁰²

Coated solid microneedles

A common strategy pursued by a number of commercial and academic teams to carry antigen across the stratum corneum is to coat it onto solid microscopic projections, which are held for variable periods of time in the epidermal layer while antigen or other drug elutes and diffuses. ^{27,30–32,35,39–43,246–248} To date, only limited published data have demonstrated suitability for human vaccination, in contrast to therapeutic drugs.

One example of drug-coated microneedles that appears closest to marketing approval is the investigational Zosano Pharma ZP Patch platform (formerly known as Macroflux) (see Figure 61-3C).³⁰³ Its titanium projections vary from 225 to 600 µm in height and are packed into an area of 1 to 2 cm² at densities from 140 to 650 tines per square centimeter. They are inserted by a spring-mounted applicator and held in place by an adhesive patch. The most advanced applications for these microneedles are delivery of parathyroid hormone to treat osteoporosis, ³⁰⁴ already studied clinically, and erythropoietin to treat anemia.

Regarding vaccine applications, ³⁰⁵ a graph from a human study of Zosano Pharma's ZP-Flu influenza vaccine patch, applied for 5 or 10 minutes onto the skin, trended toward increased titers and seroprotection compared with an IM control injection ^{306,307} (no further details were provided, nor could a public clinical trials registration be found).

A hairless guinea pig model was used to study ovalbumin on the patch's microneedles as a representative, large antigenic protein. 305,308 It was administered in two doses 4 weeks apart. It induced post-booster titers comparable to those of control IM, SC, and ID Mantoux-style injections at higher dosages, and it surpassed IM and SC routes at lower dosages. Other preclinical studies of the system demonstrated delivery of oligonucleotides 309 and the peptide hormone desmopressin. 310 The company reports animal work with tetanus, diphtheria, Lyme disease, and hepatitis B (DNA) vaccine antigens.

Another coated-microneedle platform is the *solid mictro-structured transdermal system* (sMTS), ^{26,311-315} from 3M.²⁹⁴ Its drug-coated pyramidal projections vary from 250 to 750 µm height, in arrays of 300 to 1,500 microneedles mounted on an adhesive patch at a density of 1,300 per square centimeter. ³¹⁵⁻³¹⁸ Application to the skin is by a manual finger-thumb *Press@Patch* device^{294,297,319-321} (see Figure 61-3E) or by a spring-powered applicator, shown elsewhere. ²² Coatings of the microneedles are said to hold up to 0.5 mg of active pharmaceutical ingredient.

In a rabbit model, coatings of tetanus toxoid and alum adjuvant in various ratios induced antibody levels an order of magnitude higher than the presumed protective threshold (> 0.2 IU), using just a fraction of the standard IM dosage. 322 Ovalbumin as a surrogate vaccine applied to hairless guinea pigs by sMTS using the Press@Patch applicator was reported to induce antibody, as measured by enzyme-linked immunosorbent assay, equivalent to that induced by IM-needle injection. 319 A second study using hairless guinea pigs compared three doses of 1.5 µg of HBsAg by sMTS ID and by IM injection; at 8 weeks, after two doses, seroconversion was 100% and GMT was 158 for the ID route, and 20% and GMT 0 for the IM route. 320 After dose 3, seroconversion for IM rose to 80% and GMT to 34, while the ID route remained at 100% and GMT rose to 410. In swine, a model virus-like protein (HBsAg) demonstrated dosage sparing via sMTS compared with antigen delivered by IM control route.321

Experimental placement of the sMTS microneedles device on human volunteers found it to be "well-tolerated" and "non-intimidating and not painful". A more recent public registration described a safety trial without antigen. Otherwise, no further clinical data were found in public registries or reports.

The Georgia Institute of Technology (GA Tech), ³²³ a pioneering center for microneedle technology, has worked with Emory University to conduct numerous studies of coated microneedles^{247,324} in animal models for cutaneous vaccine delivery. In a series of murine studies using solid metal microneedles coated with inactivated influenza viruses, cutaneous vaccination induced robust immune responses—often better than equivalent dosages in controls injected by the SC route—as well as protection against lethal viral challenge. ^{325–334}

When coated with BCG, the same microneedle platform (see Figure 61-3D) was highly immunogenic in guinea pigs, with robust cell-mediated responses in lungs and spleen comparable to those with Mantoux injection. The similarly, plasmid DNA antigen for hepatitis C, coated on 500-µm-long needles, primed specific cytotoxic T lymphocytes in vaccinated mice more readily than did typical "gene gun" delivery conventional needle. In a line with the similar or conventional needle. In the similar milk on live, or all vaccines was coated onto this microneedle platform and found immunogenic in an animal model.

For most of these formulations prepared at GA Tech, a key ingredient of the carboxycellulose matrix of the dried coating was trehalose, one of several sugars, including sucrose, that have been found useful in protecting protein antigens from damage by drying and freezing, and thereby improving vaccine thermostability.³⁴¹

Another center for microneedle research, in Australia, 342 developed a novel nitrogen gas jet-drying method for coating antigen onto silicon that overcomes the challenges of dip-coating closely spaced projections, 324,343,344 but it still elutes within 2 to 3 minutes upon skin entry (see Figure 61-3F). It has achieved 1/30th to 1/100th dosage sparing compared with the IM route in a mouse model for influenza. 345,346 Other antigens studied with good results in murine models with this platform—called the Nanopatch and recently transferred to industry 347—include human papillomavirus, 348 herpes simplex type 2, 349,350 and the West Nile and chikungunya viruses. 351

Coulman and coworkers studied nanoparticles and DNA plasmids expressing β-galactosidase and fluorescent proteins applied to the epidermal surface of ex vivo human breast skin donated at mastectomy.³⁵² After applying the microneedles to the skin for 10 seconds, they were able to verify epidermal penetration and gene expression by a variety of histologic and photometric means. Later work by this Welsh group reported decreased pain in clinical studies with 180-µm and 280-µm microneedles compared with the 25-gauge conventional needle,353 as well as morphologic changes suggestive of immune activation in human Langerhans cells after intradermal injection of influenza virus-like particles into excised human skin. 354 This group also found that both public and private immunization providers were positive, in focus-group discussions, toward microneedles as a change from conventional needle-syringe delivery.355 Research on and development of coated microneedles for vaccination are also underway by many other groups. 292,293,302,3

Dissolving microneedles

An elegant strategy to decrease risk from intentional reuse of, or inadvertent contact with, used microneedles is for the sharps to dissolve in the skin with hydration, thus releasing the antigen. 32,43,357-361 The most common matrix for dissolvable microneedles hard enough to penetrate skin is carboxymethylcellulose, "generally recognized as safe" for parenteral delivery by the FDA, among other compounds. 357,358 Chu and Prausnitz molded arrowhead-shaped antigen carriers of blended polyvinyl alcohol and polyvinylpyrrolidone, and mounted them on metal shafts (Figure 61-4A).358 The lower corners of the "arrows" act as barbs to keep the carrier in the skin when the patch is removed, which is done immediately. From the same group at GA Tech and Emory, Sullivan and coworkers encapsulated inactivated influenza vaccine virus into biocompatible polymer, which dissolved within minutes after its application to mouse skin (see Figure 61-4B). 359 Robust antibody and cellular immune responses provided complete protection from lethal challenge.

Several sugars, such as trehalose, sucrose, and maltose, have been found to be key ingredients in stabilizing and maintaining the potency of antigen during the process of forming dissolvable microneedles, ^{341,362,363} but thermostability studies have not yet been reported to assess whether such formulations would

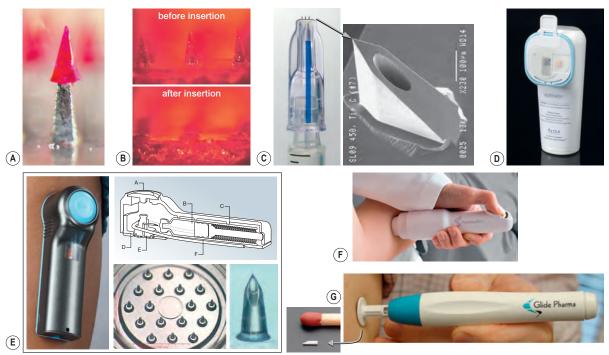


Figure 61-4 Dissolving and Hollow Microneedles, Electromagnetic Devices, and Kinetic Devices for Potential Cutaneous Vaccination. (A) Investigational dissolving 600-µm-tall "arrowhead" microneedle composed of polylactic co-glycolic acid (PLGA) encapsulating sulforhodamine B color indicator, atop 300-µm-tall metal shaft base shaft. (From Chu LY, Prausnitz MR. Separable arrowhead microneedles J Control Release 149:242-249, 2011 [Fig. 6A, p. 247].) (B) Investigational dissolving microneedle of biocompatible formulation material containing sulforhodamine B before (top) and after (bottom) skin insertion, demonstrating disintegration upon exposure to tissue moisture (Georgia Institute of Technology³²³). (C) MicronJet adapter with Luer fitting onto conventional syringe for ID delivery via hollow MicroPyramid microneedles (inset) (NanoPass Technologies Ltd. 371). Cleared for marketing in the European Union and the United States. The blue line on the hub indicates to the user that the bevel and lumen of the microneedle needle are on the opposite side. (C, inset) Microphotograph shows the pyramidal shape and lumen of an individual microneedle. (From Prausnitz MR, Mikszta JA, Cormier M, et al. Microneedle-based vaccines. Curr Top Microbiol Immunol 333:369-393, 2009 [Fig. 4 right, p. 375]), and from Van Damme P, Oosterhuis-Kafeja F, Van de Wielen M, et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27:454-459, 2009 [adapter, Fig. 1, p. 455; MicroPyramid, Fig. 2A, p. 456].) (D) Investigational PassPort thermoporation device and patch applied to patient arm. Heat induced by the device in metallic filaments embedded in the patch creates micropores in the stratum corneum for subsequent entry of drug within the patch (Altea Therapeutics 400). (E) Investigational Hollow Microstructured Transdermal System (hMTS) injection system (3M Corporation). 294,313,376,314 (E, left) The wearable device is fixed by adhesive to skin. On activation, prefilled liquid drug is forced over 5 to 40 minutes through lumina of (E, bottom center) 18 microneedles of (E, bottom right) 500 to 900 µm height. Blue button ("A" in E, upper right schematic) releases spring "C", triggering piercing of glass dose chamber "B" and transfer of liquid into reservoir of patch, which is applied to skin by delivery spring "F", and held in place by adhesive "D". (From Hansen K, Burton S, Tomai M. A hollow microstructured transdermal system (hMTS) for needle-free delivery of biopharmaceuticals. Drug Deliv Technol 9:38-44, 2009 [Figs. 1, 2, pp. 38, 40]; and from Burton SA, Ng CY, Simmers R, et al. Rapid intradermal delivery of liquid formulations using a hollow microstructured array. Pharm Res 28:31-40, 2011 [Figs. 1, 2, p. 33].) (F) Investigational Particle-Mediated Epidermal Delivery (PMED) device (PowderMed⁴⁴) propels (usually gold) microparticles coated with (usually DNA) antigen into skin using a stream of supersonic helium gas. (G) Investigational Solid Dose Injector (SDI) from Glide Pharma⁴⁷² is powered by a metal spring, which is compressed and released as the disposable drug cassette (white component extending beyond blue hub) is pressed fully against the skin. It shoots a (G, inset) pointed, hardened, ~ 1-mm-diameter drug formulation (shown compared with conventional matchstick tip) into subcutaneous tissues, where it dissolves. 473,474 (Figure 61-4A, courtesy of Leonard Chu, Georgia Institute of Technology;^{323,386} 61-4B, courtesy of Georgia Institute of Technology;³²³ [Jeong-Woo Lee]; 61-4C, courtesy of Bruce G. Weniger; 61-4C inset;^{41,150} 61-4D, Altea Therapeutics;⁴⁰⁰ 61-4E, 3M Corporation;^{294,313,314} 61-4F, PowderMed;⁴⁴¹ 61-4G, Glide Pharma.⁴⁷²)

resist heat degradation and allow transport and storage outside the cold chain. ³⁶⁴ A hydrogel polymer is proposed by Corium International as a binder-cum-adhesive for active pharmaccutical ingredients, and it will dissolve with delivery into the skin. ²⁹⁹ In Japan, CosMED markets a cosmetic MicroHyala microneedle array containing hyaluronate, which dissolves in 60 to 90 minutes, ³⁶⁵ and vaccine applications are planned. Many others also pursue dissolvable microneedles. ^{366,367}

Hollow Microneedles

Hollow microprojections of similar sub-millimeter lengths to those of the solid ones just described are designed to inject therapeutic liquids through their tiny lumens.^{29,40,43,247,368}

(In this chapter, only needles less than 1 mm long are classified as *microneedles*, as opposed to the still-small but longer *mini-needles*, such as those in the Soluvia system [see Figure 61-2H]—see "Reinventing the wheal", earlier.) Although harder to manufacture and more easily broken and clogged ^{247,284} flow rates of microneedles have been measured up to a remarkable 1 mL per minute per cannula. ³⁶⁹ Common lengths of 200 to 500 μm are short enough, in theory, to be painless, as they would not reach nerve endings in the dermis. ^{31,553,368,370} However the quite perceptible stretching of skin with the injection of liquid may eliminate any such advantage.

The MicronJet 600 device³⁷¹ is unique in its availability as a licensed, sterile, disposable device for end users to inject liquids

for cutaneous delivery. It consists of three hollow 600-µm-tall microneedles of beveled pyramidal shape mounted on an adapter with Luer interface for fitting onto a conventional syringe for liquid vaccine or drug (see Figure 61-4C). In 2010, it was cleared by the FDA for injection of any drug approved for ID delivery. It also holds a CE mark for marketing in Europe.

Adult volunteers vaccinated intradermally by a similar MicronJet version (four microneedles of 450 μm height each) received reduced 3 or 6- μg -per-strain single doses, or full 15- μg doses by IM route, of licensed alpha-RIX (Fluarix, GSK) 2007–08 seasonal influenza vaccine. By day 21, all three study arms developed comparable increases in GMTs and satisfied European criteria 372 for relicensure of seasonal influenza vaccines in full. 150 Local reactions were more frequent than by the IM route, but they were mild and transient. Similar dosage-sparing trials for 2009–10 monovalent H1N1 influenza vaccine 373 and 2010–11 trivalent vaccine 374 confirmed comparable or superior immune responses for the ID route versus IM. 375

Another hollow microneedle system is 3M's hollow microstructured transdermal system (hMTS). 26,294,311,313,314,376 Its patient-contact surface contains 18 microneedles of 500 to 900 um in length, whose lumina of 10 to 40 um in diameter deliver liquid volumes ranging from 0.3 to 1.5 mL (see Figure 61-4E). A spring-powered device contains liquid drug prefilled into a glass dose chamber. Upon triggering, the stopper of the chamber is pierced by a spike, through which the dose passes and is forced slowly over a period of 5 to 40 minutes through the microneedles into the skin of the upper arm or thigh. Adhesive on the patch keeps the system in place until delivery is complete. Delivery of equine tetanus antitoxin to swine as a model for delivery of monoclonal antibodies resulted in pharmacokinetic profiles of tetanus antitoxin similar to dosages via SC injection.³⁷⁶ Other groups have also pursued hollow $microneedles.\overset{,}{^{22,302,356}}$

Tattoo technology

Preclinical studies using commercial cosmetic tattoo machines delivered experimental DNA vaccine antigens on multineedle arrays (eg, nine), vibrating at frequencies of up to 100 Hz for durations of 5 to 20 seconds, resulting in thousands to tens of thousands of skin piercings per dose. The Whether such a potentially painful delivery method would be practical, economical, or esthetically acceptable for human vaccination, as well as advantageous over other methods for cutaneous delivery, remains to be demonstrated.

Electromagnetic energy

The use of light or electricity, or the heat or radiation they produce, has been pursued to facilitate entry of drug into the skin, either during a brief or constant application of energy, or through the pathways created after a short pulse.

Laser light

Laser light has been used in various ways to breach the stratum corneum. In one technique, a brief pulse ablates this layer, after which drugs are applied directly onto the exposed epidermis, often with an occlusive patch, for the few hours until the stratum regenerates.^{29,35,54,380-383} The LAD (laser-assisted drug delivery) device generates an erbium-doped yttrium-aluminumgarnet (YAG) laser beam whose energy is highly absorbed by skin.^{382,384} It was shown in adult volunteers to facilitate the anesthetic effect of the topical application of lidocaine,³⁸² and it is licensed in the United States and Australia for that purpose.

A new system focuses the laser beam to create 150 pores per activation, with claimed pore diameters of $200 \mu m$ and selectable depths of 30, 60, or $90 \mu m$, which should remain in the epidermis, not reaching dermal nerve endings. 385,386 Another method uses a high-power pulsed laser to create a photomechanical wave that drives particles representing drug

carriers through the stratum corneum.^{387–389} Clinical studies for intended vaccination using all such laser methods have not yet been reported.

Electrophoretics

Iontophoresis—first demonstrated a century ago in rabbits³⁹⁰—involves an electric current to drive charged molecules from an electrode of the same charge toward another of opposite charge located elsewhere on the body, ^{31,32,35,54,391–395} Some licensed devices apply this technique for skin anesthesia. ^{303,396} A related method is *electro-osmosis*, which induces a flow of solvent to carry uncharged molecules. ^{245,397} Voltages greater than 1 volt in themselves increase skin permeability, perhaps by opening up pathways along hair follicles. But these techniques do not work well with larger molecules, which characterize many vaccine antigen proteins.

Thermoporation and electroporation

Thermoporation, also termed microporation, uses heat to vaporize tiny openings in the stratum corneum. 31,32,54,398,399 In the PassPort system, 26,400 this heat is generated by a disposable array of metallic filaments held momentarily against the skin by a device the size of a computer mouse (see Figure 61-4D). At activation, electric pulses are induced to heat the filaments. An adhesive patch containing vaccine or therapeutic agent is then applied over the micropores just created. In a hairless mouse model, this technique elicited 10 to 100-fold greater cellular and humoral responses to an adenovirus vaccine than intact skin, as well as 100% protection to surrogate tumor challenge (27% for intact skin). 398 In the same model, adenovirus-vectored melanoma antigen applied to the micropores roughly doubled the average onset time of tumors after challenge, and it protected one of six mice, compared with none of eight vaccinated controls with intact skin. Microporated recombinant influenza H5 hemagglutinin protected BALB/c mice from challenge with a lethal H5N1 strain.401 Skin micropores also permitted the passage of insulin in pharmacokinetic human trials with historical controls, 402,403 and in the other direction allowed interstitial fluid to be extracted for potential glucose monitoring. 404

Another device similarly generates micropores with heat induced by radiofrequency waves (ViaDerm). ^{26,405} A different technique uses short, 100-µsec pulses of superheated steam in microliter amounts to remove the stratum corneum. ⁴⁰⁶ Without apparent effect on deeper skin elements in a human cadaver model, this resulted in 1,000-fold in vitro increases in permeability to sulforhodamine B and bovine serum albumin as surrogate molecules for drug or antigen.

Electroporation uses very short electrical pulses to produce in the intercellular lipid matrix of the stratum corneum temporary pores of nanometer-range diameters, which remain open and permeable for hours. ^{31,407-412} In vitro and in vivo preclinical studies of this technique demonstrated skin entry of larger molecules, such as heparin (12 kDa), peptides, proteins (such as luteinizing-hormone-releasing hormone), and nucleic acids, ^{392,398,413-415} with potentially extensive use for investigational DNA vaccines in animals and humans. ⁴¹⁶

The Easy Vax⁴¹⁷ and related Derma Vax epidermal electroporation systems combine the application of antigen or drug-coated 2-mm-long mini-needles, followed by electroporation. Smallpox antigen in plasmid DNA was dried onto the tips of arrays and inserted into the skin of mice, and when followed by six electric pulses, it induced protection from smallpox challenge. ⁴¹⁸ A prostate cancer DNA vaccine was similarly administered. ⁴¹⁹ Electroporation by the IM route is also pursued to enhance vaccination with DNA antigens. ^{412,420,421} A hollow needle injects the drug conventionally into muscle, while parallel solid needles surrounding the injected dose create the current to generate pores in the target muscle tissue. Investigational or marketed products are CythorLab, ⁴²² Easy Vax, ⁴¹⁷ Electrokinetic Device, ⁴²³ ECM, ⁴²⁴ MedPulser, ^{420,421,425} and TriGrid, ^{426,427} among others.

1211

To facilitate drug or antigen delivery, the connection between keratinocytes can be solubilized by ultrasonic waves and short-duration shock waves. ^{29,31,32,35,245,428,430} These are theorized to induce cavitation—the formation and collapse of microbubbles—which disrupts the intercellular bilayers in the stratum corneum. Low frequencies (< 100 kHz) appear to work better than the higher frequencies used in therapeutic ultrasound (>1 MHz). Transdermal tetanus toxoid immunization of mice was enhanced 10-fold compared with the SC route when subjected to ultrasound at 20 kHz. ⁴³¹ High-molecular-weight molecules delivered include insulin, erythropoietin, interferon, and low-molecular-weight heparin. ^{31,429,432,433} Various groups are pursuing ultrasound for enhanced drug delivery. ^{384,434,435}

Kinetic deposition

The transfection of cells by kinetic methods to deposit DNA-coated gold particles into them was pioneered in the 1980s. ⁴³⁶ The Helios or PDS 1000/HE gene guns ³³⁶ and the Accell injector ³³⁷ have become standard bench tools for biolistic delivery of nucleic acid plasmids into a wide variety of plants and animals to transfect them to express the coded genes. ^{42,437,438} Delivery of DNA into the skin overcomes the usual polarized T-helper cell type 1 (Th1) response when DNA is delivered into muscle. ^{30,439,440} These devices are unavailable for human vaccination (patent rights are held by PowderMed⁴⁴¹). Documenting the safety of DNA as an antigen by any route remains a major regulatory obstacle for such a paradigm shift in human vaccination. ³⁰

Powder or particle technology

The proprietary terms *epidermal powder immunization* (EPI) and *particle-mediated epidermal delivery* (PMED) refer to the use of helium gas to blow powdered proteins, polysaccharides, or inactivated pathogens (EPI) or DNA-coated particles (PMED) into the epidermis at supersonic speeds. This unique method of vaccination was developed in the early 1990s by Oxford BioSciences, which over the years was renamed PowderJect, acquired by Chiron, sy pun off as PowderMed, and finally acquired by Pfizer and 12006. Delivery is by either reusable (XR series) or single-use disposable (ND series) devices (see Figure 61-4F), with the latter targeted for commercialization.

Conventional protein antigens for delivery by EPI are spraydried into powders of suitable density and size (20 to 70 μm), 445,446 but the economics of manufacturing such formulations may be an obstacle. 30 For DNA vaccines delivered by PMED, plasmids coding for desired antigens are coated onto gold beads (1 to 3 μm in diameter) and, when deposited into epidermal antigenpresenting cells, they are eluted and transcribed. 447 A number of preclinical studies in various animal models have been conducted. 442,445,448,449

Human trials of DNA vaccines containing up to one order of magnitude less antigen than the amount used for IM routes have induced humoral and cellular immune responses for hepatitis B in subjects both naïve and previously vaccinated with conventional vaccine.⁴⁵⁰⁻⁴⁵³ PMED vaccination has also been studied for DNA priming in trials of malaria vaccine,^{454,455} has produced seroprotective immune responses by DNA vaccine for seasonal strains of influenza, ^{83,456} and has reduced influenza symptoms and viral shedding after human challenge.⁴⁵⁷ Clinical trials still ongoing or unpublished are studying antigens for H5 avian influenza (DNA),⁴⁵⁸ herpes simplex virus 2,⁴⁵⁹ HIV and non–small cell lung cancer.^{460,461}

In the hepatitis B and influenza trials cited earlier, there were no severe local reactions, but erythema, swelling, and flaking or crust formation occurred in nearly all subjects, albeit resolving by day 28. Skin discoloration, however, persisted through day 56 in 29 (97%) of 30 subjects, 453 through day 180 in 21 (25%) of 84 injection sites, 236 and beyond 12 months in 5 (25%) of 20

patients with long-term follow-up. 453 No anti-double-stranded DNA antibodies were detected. The deposition of the gold particles was studied in pigs, in which most were deposited in the stratum corneum and epidermis and were eventually sloughed by exfoliation by 28 days. 462 At days 56 and 141 after administration, a few particles remained in the basal epidermal layer and in macrophages in the dermis and regional lymph nodes. Six clinical trials of PMED were initiated in 2006 and reported complete by 2007 or 2008 for delivery of investigational herpes simplex type 2 vaccine; seasonal, pandemic, and trivalent DNA influenza vaccines; and hepatitis B vaccine. 463 Results were not yet published as of January 2012.

Preclinical studies of EPI or PMED in murine, porcine, and primate models have shown immunogenicity or protection for either powdered or DNA plasmid antigens for various other pathogens, including Eurasian encephalitic viruses, 464 hantaviruses, 465 HIV, 466, 467 influenza H5N1, 448 malaria, 468 SARS coronavirus, 469 smallpox, 470 and Venezuelan equine encephalitis. 471

Other kinetic and thermal methods

Another delivery method, termed needle-free *solid dose injector* (SDI), is from a British firm, Glide Pharma (see Figure 61-4G). ^{26,472-474} It uses a spring-loaded device to quickly push into SC tissue a sharp, pointed, biodegradable "pioneer tip" and the solid or semisolid medication behind it in the chamber—both about the width of a grain of rice.

Microscission involves a stream of gas containing tiny crystals of inert aluminum oxide to bombard small areas of the skin. A mask on the skin limits the sandblasting effect to narrow areas, so channels are created in the stratum corneum to which drug is then applied.⁴⁷⁵ Another method uses a fast and powerful contractile fiber-activated pump to fire drug at the skin with sufficient velocity to penetrate the epidermis.³⁸⁴ A miniaturized form of traditional jet injection uses piezoelectric transducers to propel liquid microjets into the skin.⁴⁷⁶

Adjuvants and enhancers for cutaneous vaccination

As bathers notice in their fingertips, prolonged wetting of the skin, or occluding it to hold in body moisture, produces fluid accumulation in intercellular spaces and swelling of the keratinocytes, which permits enhanced passage of applied agents. ²⁵⁶ Rubbing the skin with acetone also enhances antigen passage by extracting epidermal lipids. ²⁵¹

Bacterial exotoxins

Discovery of the remarkable adjuvant effect of bacterial ADP-ribosylating exotoxins, such as the B (binding) subunits of cholera toxin and the structurally similar, heat-labile toxin of enterotoxigenic *E. coli*, has prompted much interest in using these to enhance cutaneous delivery. ^{39,244,477–484} The group that has progressed the furthest in clinical trials is Intercell, ²⁵⁸ the successor to pioneering work begun by the US Army and then by Iomai (see "Skin preparation system and transcutaneous immunization", earlier). Another group used cholera toxin as an adjuvant when administering influenza vaccine to mice with skin pretreated with microneedles. ⁴⁸⁵

For safety reasons, these toxins have been engineered, or mutants selected, to reduce toxicity while retaining adjuvanticity. 482,486-488 Nevertheless, one such use as adjuvant in a licensed, Swiss-made intranasal influenza vaccine was hypothesized as the cause of temporary paralysis of the seventh cranial nerve (Bell's palsy), prompting market withdrawal. 46

Chemical, protein and colloidal enhancers

Chemical penetration enhancers under consideration as skin adjuvants, alone or in conjunction with iontophoresis, ultrasound, or electroporation methods, include oleic and retinoic acids, ²⁵⁵ dimethylsulfoxide (DMSO), ethanol, limonene, polysorbate, and others. ³¹ Flagellin, a bacterial surface component

protein, was engineered to express influenza nucleoprotein epitope and applied to the bare skin of mice, inducing virus-specific interferon-gamma T cells. 244 Certain colloids may serve as antigen carriers. 33 Deformable lipid vesicles ("transfersomes") containing tetanus toxoid applied to animal skin yielded comparable immune responses with alum-adjuvanted tetanus toxoid given by the IM route. 489

Combination methods

Other novel methods of delivery include the use of short needles to poke an initial opening into the skin, followed immediately by SC or IM jet injection with much lower pressures than otherwise would be needed. 490,491

Jet injection

History and applications

Jet injectors (JIs) squirt liquid under high pressure to deliver medication without needles into targeted tissues (Table 61-1).^{22,492-521} The technology was invented in France in the 1860s (Figure 61-5A),^{492,522,523} a patent was filed for in 1936,524 and it was reintroduced in the 1940s as the Hypospray⁵²⁵⁻⁵²⁷ for patient self-injection with insulin (see Figure 61-5B). In the 1950s, the US military developed a highspeed system (see Figure 61-5C), which was imitated by others (see Figure 61-5D, E, F, G, I), and the units were once referred to as jet guns for mass vaccination programs. 528-532 Over the past halfcentury, JIs have been used to administer hundreds of millions, if not billions, of vaccine doses for mass campaigns in humans against smallpox, 1,533-538 measles, 533,535,538-541 polio, 531,542 meningitis, 543-545 influenza, 546,547 yellow fever, 533,538,548,549 cholera 550 and other diseases. ^{21,542,543,551–554} During the swine influenza mass campaign of 1976-77 in the United States, a substantial proportion of the approximately 43 million doses administered that season⁵⁵⁵ were by IIs (CDC, unpublished data). 555,556

JIs have also been used for a wide variety of therapeutic drugs, including local 557,558 and pre-general 559,560 anesthetics, 561 antibiotics, 562,563 anticoagulants, 564,565 antivirals, 566,567 corticosteroids, 568,569 cytotoxics, 570 immunomodulators, 241,571 insulin 526,572,573 and other hormones, 574-576 and vitamins. 577 Veterinary models for agricultural use are widespread. 578 In recent years, the devices have been used to administer various antigens to both humans and animal models for a variety of investigational vaccines, including dengue, 230,579-581 herpes simplex type 2,582 HIV/AIDS, 231,583,584 Japanese encephalitis, 585 malaria, 232 and melanoma. 586

Occupational and patient safety, economics

Increasing concern for needle-stick injuries and possible transmission of bloodborne pathogens to health workers, as well as the more expensive needle-shielding syringes that occupational health regulations now require to reduce the risk of injury, 587 have boosted interest in JIs in developed countries. 588 Another economic factor is the high cost of proper disposal of highly regulated sharps waste, which is not required for used JI syringes (see "Disposable-syringe jet injectors", later). As the latter may be soiled with blood or tissue fluid, they should be discarded with conventional red-bag medical waste, along with used bandages and similar materials. 587

For many developing countries, where inadvertent or intentional reuse of nonsterile needle-syringes is a serious problem, ^{10,11} modeling indicated significant cost savings for the use of needle-free JIs compared with needle-syringes, especially when the indirect costs of iatrogenic disease resulting from the latter were included. ^{589,590} (Current best practice aims for all vaccination syringes in these countries to be auto-disabling to prevent reuse, ⁵⁹¹ but this goal is far from achieved. ⁵⁹²)

Mechanical and clinical aspects

Designs, power supplies, types

Common features of all JIs include a dose chamber of sufficient strength to hold the liquid when pressurized, a moving piston at the proximal end to compress the liquid, and a tiny orifice (commonly ~ 0.12 mm in diameter, ranging from 0.05 to 0.36 mm] 495,593 at the distal end to focus the exiting stream for delivery into the patient. The pistons of the majority of modern JIs are pushed by the sudden release of energy stored in a compressed metal spring, and a few use compressed gas such as $\rm CO_2$ or $\rm N_2$ (see Table 61-1). Investigational JIs are powered by the expanding pressure of chemical combustion, a technology similar to that found in automotive safety air bags, 84d,302,594,595 as well as by Lorentz-force electromagnetic induction. 595a

The source of energy to compress the spring is usually supplied manually or pedally through an integral or separate tool to apply mechanical advantage or hydraulic pressure. A few use electrical power from batteries or wall (main) electrical current. An experimental JI system controlled by electronic microprocessors has been proposed, ⁵⁹⁶ but its cost and practicality for routine immunization remain unknown.

Although devices vary, peak pressures in the dose chambers range from 14 to 35 megapascals (\sim 2,000 to 5,000 psi) and occur quite early so that the stream can puncture the skin. After the peak, pressures drop about one third to two thirds during a descending plateau phase until rapid tail-off at the end of the piston's stroke. The velocity of the jet stream exceeds 100 m/sec. ⁵⁹⁷ Complete injection lasts about 1 /s to 1 /2 a second, depending on the volume delivered, the orifice cross-section, and other variables.

JIs can be classified in many ways: by their energy storage and sources, by intended market (human versus veterinary), by intended usage (eg, repeated self-administration of insulin by the same patient versus vaccination of consecutive patients), by how the dose chamber is filled (medication vial attached "on tool" versus filled "off tool"), by reusability of the entire device (single-use disposable versus reusable), and by reusability of the fluid pathway and patient-contact components (multiuse versus disposable). This last criterion results in a key distinction between multiuse-nozzle jet injectors (MUNJIs) and disposable-syringe jet injectors (DSJIs; once called disposable-cartridge jet injectors), with major implications for immunization safety (see "Safety of multiuse-nozzle jet injectors" and "Disposable-syringe jet injectors", later).

Deposition in target tissues

In vivo imaging indicates that jet-injected medication tends to spread along paths of least resistance in a generally conical distribution. ⁵⁹⁸⁻⁶⁰⁴ The depth achieved depends primarily on the power imparted to the liquid, and on variables such as orifice diameter, viscosity of the dose, tautness and thickness of the skin and fat layer, and angle of injection. ^{495,496,525,597,599,605,606} Only the SC compartment is reached by many DSJIs designed for self-administration by patients of insulin, hormones, and other drugs, as well as some MUNJIs used in dental anesthesia (eg, Fig. 61-5H). ^{607,608}

Most MUNJIs developed for mass vaccination campaigns are powered to reach IM tissues—for example, the Ped-O-Jet⁶⁰⁹ (see Figure 61-5C) and Med-E-Jet⁶¹⁰ (see Figure 61-5E), as well as several new-generation DSJIs. The Biojector 2000 varies the orifice of different cartridges on the same injector to deliver either by the IM or the SC route (Figure 61-6I).^{83,611,612} The PharmaJet⁸² (not shown) varies spring strength of color-coded injectors for IM delivery to different-size patients. For its newer Stratis model, SC delivery is by operator technique to pinch up and inject into the fat layer (see Figure 61-6C). The LectraJet⁶¹³ can also vary spring strength between models (see Figure 61-6A,B). Given

Table 61-1 Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)

Current/last manufacturer	Device trade name(s)	Year(s)*	Market/primary uses	Energy source/ storage	Туре	Filling	Target tissue	References
Activa Brand Products ⁵⁰⁰	Preci-Jet,† Preci-Jet 50,† AdvantaJet GentleJet, Freedom Jet	1984	Hu/In	Ma/Sp	MUNJI	On-F	SC	394, 575
American Jet Injector ⁵⁰¹	Am-O-Jet	1995	Hu/Va	Pe/Sp	MUNJI	On-I	ID, IM	715
Antares Pharma ⁷³¹	Medi-Jector [†]	1972	Hu/Va	Ma/Sp	MUNJI	On-I	M, SC	532, 569
	Medi-Jectors II,† III,† IV†	1980s-90s	Hu/In	Ma/Sp	MUNJI	On-F	SC	604
	Medi-Jector Choice (MJ 6)†	1997	Hu/In	Ma/Sp	DSJI	On-F	SC	_
	Medi-Jector Vision [‡] (MJ 7, ZomaJet, SciTojet, Twin-Jector EZ II, Tjet)	1999	Hu/In, Gh	Ma/Sp	DSJI	On-F	SC	572, Fig. 61-6D
	Valeo (MJ 8)§	2000s	Hu/In, Gh	Ma/Sp	DSJI	Md, Sd	SC	495
	Medi-Jector MJ 10 [§]	1997	Hu	Ga/Ga	SUDJI	Mf	SC	_
	Vibex [§]	2001	Hu/Va	Ma/Sp	Mini-needle DSJI, SUDJI	Mf, Off	ID, SC	495
	Vaccijet électrique, Avijet		Ve/Va	Ba/Sp	MUNJI	On-I, via tube	ID, IM, SC	_
	Vaccijet manuel	_	Ve/Va	Ma/Sp	MUNJI	On-I	ID, IM SC	_
Avant Medical502	Guardian101 [§]	2002	Hu/Un, Va	Ma/Sp	DSJI	Off	SC	_
Becton, Dickinson ⁸⁴	Velodermic ^{†,§}	1940s	Hu	Ga/Ga (N ₂)	DSJI	_	_	492, 542, 572, 598
Beijing QS Medical Technology Co., Ltd. ^{84a}	QS Jet	2010s	Hu/In	Ma/Sp	DSJI	Off, Md	SC	_
Bio-Curve Beauty & Health Equipment Factory ^{84b}	BC-M7 SMART JET	2010s	Hu/Un	Ma/Sp	DSJI	Off	SC	_
Bioject ⁸³	Biojector 2000	1993	Hu/Va, Av	Ga/Ga (CO ₂)	DSJI	Off	ID [§] , IM, SC	34, 166, 167, 231, 414, 559, 566, 567, 581-584, 586, 611, 612, 614, 638-640, 642, 651, 653, 658, 677, 681-684, 696, Fig. 61-6l
	Vitajet,† VitajetII†	1984	Hu/In	Ma/Sp	MUNJI	On-F	SC	_
	Vitajet 3 (cool.click,~ SeroJet,~ mhi-500,* Canine Transdermal Device**)	1996	Hu, Ve/In Gh, Va	Ma/Sp	DSJI	On-F	SC	34, 597, 657
	lject [§]	2000s	Hu/Un	Ga/Ga (N ₂)	SUDJI	Mf	SC	730, Fig. 61-6K
	liect R§	2000s	Hu/Un	Ga/Ga (N ₂)	DSJI	Mf	SC	730

Table 61-1 Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)—cont'd

Current/last manufacturer	Device trade name(s)	Year(s)*	Market/primary uses	Energy source/ storage	Туре	Filling	Target tissue	References
	Vitavax [§]	2004	Hu/Va	Ma/Sp	DSJI	On-F	SC	_
	Vetjet ^{††}	_	Ve/Va	Ma/Sp	DSJI	On-F	SC	503
	Mhi-500 ¹	2000s	Hu/In	Ma/Sp	DSJI	On-F	SC	510
	Bioject Zetajet (once known as Vitavax)	2009	Hu/Va	Ma/Sp	DSJI	On-F	ID [§] , IM, SC	740, Fig. 61-6J
	Bioject ID Pen	2011	Hu/Va	Ma/Sp	DSJI	Off	ID	Fig. 61-2K
Chemical Automatics Design Bureau (CADB) ⁵⁰⁴	BI-1, BI-1M, BI-2, BI-3, BI-3M, BIP-4, BI-8, BI-19, ISI-1, SShA	1960s	Hu/Va	Ma/Sp	MUNJI	On-I	SC, IM	493, 547, 617, 643- 646, 668, 689, 690, 714, 729
Consort Medical	mhi-5001 (InsulinJet1)	2001	Hu/In	Ma/Sp	DSJI	On-F	SC	_
plc, Bespak	SQ-PEN	2002	Hu/In	Ma/Sp	DSJI	On-F	SC	_
division ⁵¹⁰	SQ-X	2002	Hu/In	Ma/Sp	DSJI	On-F	SC	_
	MHP-1	2010s	Hu/In	Ma/Sp	DSJI	On-F	SC	_
	cool.click II	2010s	Hu/Ho	Ma/Sp	DSJI	On-F	SC	_
Crossject ⁵⁹⁴	Crossject [§]	2001	Hu/Un	Ch/Ch	SUDJI	Mf	SC, IM, ID	_
	Zeneo§	2010s	Hu/Mu	Ch/Ch	SUDJI	Mf	ID, M, SC	84e
D'Antonio	LectraJet HS§	1980s	Hu/Va	Ba/Sp	DSJI	Off	ID, M, SC	34, 679, Fig. 61-6A
Consultants,	LectraVet	1980s	Ve/Va, Mu	Ba/Sp	MUNJI	On-I	IM, SC	_
International (DCI) ⁶¹³	LectraJet M3 RA	2011	Hu/Va	Ma/Sp	DSJI	Off	ID, M, SC	34, 654, Fig. 61-6B
EMS Electro	Swiss Injector§, EMS/RPM§	1990s	Un/Un	_	MUNJI	On-F	IM	611
Medical Systems ⁵⁰⁵	EMS/MPM [§]	1990s	Un/Un	_	MUNJI	Md	IM	611
EuroJet Medical ⁵⁰⁶	E-Jet 500	2003	Hu, Ve/Ho, In, St, Va	Ma/Sp	DSJI	Off	SC	_
	E-Jet 50	2003	Hu/Va	Ma/Sp	DSJI	Off	SC	_
Felton ⁷²¹	BI-100,§ HSI-500§	1990s	Hu/Va	Pe/Sp	MUNJI	On-I	IM, SC	34, 722
	Pulse 200, 250	1990s	Ve/Mu	Ga/Ga	MUNJI	On-I	IM, SC	_
H. Galante et Compagnie ⁵⁰⁸	Device for l'Aquapuncture [†]	1865	Hu/Mu	Ma/Ma	MUNJI	ON-I	_	523, Fig. 61-5A
Genesis Medical ⁵⁰⁷	Sensa-Jet ^{†,§}	1990s	Hu/Va	Ma/Sp	DSJI	Off	SC	
Heng Yang Weida Science Technology ⁵⁰⁹	Pro-Jeey 2000	_	Hu/Un	_	_	_	_	_
INJEX – Equidyne Systems ⁷³²	INJEX 30 and 50 [§] models, ZipTip ^{‡‡}	2000	Hu/In, Gh	Ma/Sp	DSJI	Off	SC	34, 576, 665, Fig. 61-6G
	Jet Syringe,§ ROJEX§	2000s	Hu/In, Gh	Ma/Sp	SUDJI	Mf or Off	SC	_

Keystone Industries ^{607,609}	Ped-O-Jet [†]	1950s	Hu/Va	Pe, El/Sp	MUNJI	On-I	ID, M, SC	1, 80, 81, 172, 529, 532-535, 538, 547-549, 554, 556, 570, 574, 620, 621, 636, 645, 649, 657, 661, 663, 667, 672, 679, 687, 711, 712, 715, 720, Figs. 61-2E, 61-5C
	Syrijet	1960s	De, Hu/An, St	Ma/Sp	MUNJI	Md, Sd	ID, SC	574, 603, 607, 685, 712
MADA Medical Products ⁶⁰⁸	MadaJet, MadaJet XL	1980s	De, Hu/An, St	Ma/Sp	MUNJI	Md	ID, SC	241, 557, 716, Fig. 61-5H
Med-E-Jet D ⁶¹⁰	Med-E-Jet	Early 1970s	Hu/Va	Ga/Ga (CO ₂ , air)	MUNJI	On-I	ID, M, SC	532, 560, 564, 637, 705- 708, 714, Fig. 61-5E
Medical	MED-JET	1990s	Hu/An, Va	Ga/Ga (CO ₂)	MUNJI	ON-I	IM, SC	726, 727
International	MED-JET H-III	2010s	Hu/Va, St, Mu	Ga/Ga	MUNJI	ON-I	IM, SC	726, 727
Technologies ⁷²⁵	MED-JET MBX	2010s	Hu/Mu, St	Ga/Ga	MUNJI	ON-I	ID, M, SC	726, 727, Fig. 61-5F
	MED-JET H-IV§	2010s	Hu/Va, Mu	Ga/Ga	DSJI	Off	ID, M, SC	_
	Agro-Jet, MIT-II, MIT-IIP, MIT-III, MIT-V, MIT-VI, MIT-X, MIT-XIV	1990s, 2000s	Ve/Va, Mu	Ga/Ga (CO ₂)	MUNJI	ON-I	IM, SC	_
Microbiological Research Establishment ⁵¹¹	Porton Needleless Injector,† Port-O-Jet†	1962	Hu/Va	Pe/Sp	MUNJI	ON-I	ID, SC	602, 655, 702
National Medical Products ⁷³³	J-Tip	1990s	Hu/In	Ga/Ga (CO ₂)	SUDJI	On-F	SC	558, Fig. 61-6F
Nidec Tosok Corporation ⁵¹²	Hyjettor [†]	1970s	Hu/Un	Pe/Hy	MUNJI	On-I	ID, M, SC	_
PATEV GmbH & Co KG	Pyrofast [§]	2009	Hu/Un	Ch/Ch	SUDJI	Off	ID, M, SC	595
PATH ¹⁰⁶	MEDIVAX ^{†,§}	1990s	Hu/Va	Pe/Ga (air)	DSJI	On-I	SC, IM	715
PenJet Corporation ⁵¹³	PenJet [§]	1990s	Hu/Va	Ga/Ga (N ₂)	SUDJI	Mf	SC	_
PharmaJet, Inc.82	PharmaJet	2000s	Hu, Ve/Va	Ma/Sp	DSJI	Off	ID, M, SC	641, 738, 739
	Stratis	2011	Hu	Ma/Sp	DSJI	Off	IM, SC	641, Fig. 61-6C
	Tropis	2011	Hu/Va	Ma/Sp	DSJI	Off	ID	169, 579, 580, 641, Fig. 61-2J
Prolitec SA ⁵¹⁴	IsaJet,† Isa40 Isa10	1990s	Hu, Ve/Un	Ma/Sp	MUNJI	On-I	IDm	_
	Mesoflash M10 [†]	1980s	Ve/Un	Ma/Sp	MUNJI	On-l	IDm	_
	Mesoflash M30 [†] and M40 [†]	1980s	Hu/Un	Ma/Sp	MUNJI	On-l	IDm	_
Sanofi Pasteur ⁷³⁶ (manufactured	Im-O-Jet [†]	1980s	Hu/Va	Pe/Sp	MUNJI	On-I	SC	194, 671, 674, 737, Fig. 61-5G
under former Institut Mérieux and Pasteur Mérieux Sérums & Vaccins entities)	Mini-Imojet, ^{†,§} PM 3C ^{†,§}	1980s	Hu/Va	Ma/Sp	DSJI	Mf	SC	34, 134, 648, 650, 660, 737, Fig. 61-6H

Table 61-1 Historical, Currently Marketed, and Investigational Jet Injectors Used, Studied, or Considered for Vaccination (see footnotes for explanation of abbreviations)—cont'd

Current/last manufacturer	Device trade name(s)	Year(s)*	Market/primary uses	Energy source/ storage	Туре	Filling	Target tissue	References
Robert P. Scherer Co. ⁵²⁷	Hypospray [†]	1940s	Hu/In	Ma/Sp	DSJI	Off	ID, SC	492, 525, 526, 562, 563, 568, 574, 577, 599, 605, Fig. 61-5B
	Hypospray Professional [†]	1950s	Hu/Va	Ma/Sp	MUNJI	On-I	ID, M, SC	220, 624, Fig. 61-5I
	Hypospray Multidose Jet Injector,† K,† K-2,† K-3† models	1952	Hu/Va	El/Sp	MUNJI	On-I	ID, M, SC	130, 140, 542, 550, 551, 601, 624, 628, 688, 691, 699, Fig. 61-5D
Schuco International ⁵¹⁵	Panjet multiple models,† Intrajet,† SchucoJet†	1960s	Hu/Va	Ma/Sp	MUNJI	On-F, Md	ID, SC	194, 208, 622, 623
Shimadzu Corporation ⁵¹⁶	ShimaJET	_	Hu/In, Va	Ma/Sp	DSJI	On-F	SC	585, 680, 686
SIC M ⁵¹⁷	JET2000	_	Hu/Va	Ma/Sp	MUNJI	On-I	_	715
	DG-77	_	Hu/Va	Ma/Sp	MUNJI	On-I	_	573
Sino Goldbuilder Med Tech (Beijing) Co., Ltd. ^{84c}	Goldbuilder Ruisu GB-03	2010s	Hu/In	Ma/Sp	DSJI	Off	SC	_
Société AKRA DermoJet ⁵¹⁸	DermoJet Standard, Dermojet type HR, Dermojet model G	1960s	Hu/Va	Ma/Sp	MUNJI	On-I, Md	ID, IDm, SC	74, 217, 218, 226, 207, 209, 211-213, 553, 571, 574, 632, 661
	Dermojet Automatic, Vacci-Jet	_	Hu/Un	Ma/Sp	MUNJI	On-I	SC	_
Team Consulting84d	Chemomotor §	2000s	Hu/Va	Ch/Ch(butane)	DSJI	Off	ID, SC, IM	_
Valeritas ³⁰²	Mini-Ject [§]	2000s	Hu/Mu Va	Ch/Ch	SUDJI	Mf	ID, M, SC	678
Z & W Manufacturing ⁵¹⁹	Press-O-Jet [†]	1950s	Hu/Va	Ma/Sp	MUNJI	On-F	SC/IM	528, 542, 546, 574, 659, 666
Zogenix ⁷³⁴	IntraJect [§]	1990s	Hu/Ho	Ga/Ga (N ₂)	SUDJI	Mf	SC	593, Fig. 61-6E
	Sumavel DosePro§§	2010	Hu	Ga/Ga (N _a)	SUDJI	Mf	SC	735

Market/primary uses: An, anesthetic; Av, antiviral; De, dentistry; Gh, growth hormone; Hu, human medicine; In, insulin; Mu, multiple; St, steroids; Un, unspecified; Va, vaccine; Ve, veterinary.

Energy source/storage: Ba, battery; Ch, chemical (via expanding gases of reaction or combustion); El, wall (mains) electricity; Ga, compressed gas (cylinder or electrical compressor); Hy, hydraulic fluid pressurized in foot-pump accumulator; Ma, manual muscle; Pe, pedal muscle; Sp, metal spring.

Type: DSJI, disposable-syringe jet injector; MUNJI, multiuse-nozzle jet injector; SUDJI, single-use disposable jet injector (entire unit discarded after use).

Filling: Md, multiple doses possible from dose chamber before refilling required; Mf, manufacturer prefilled only; Off, off tool (dose chamber [syringe] is filled from vial before insertion into injector); On-F, on tool (primary container [vial] attaches temporarily to injector to fill dose chamber during filling but is removed before injection); On-I, on tool (primary container [vial] remains attached to injector to fill dose chambers repeatedly but stays attached during injections); Sd, dose chamber is a prefilled, standard drug cartridge (primary container).

Target tissue: ID, intradermal; IDm, intradermal with multiple orifices for simultaneous injection; IM, intramuscular; SC, subcutaneous.

^{*}Approximate year(s) first introduced to market; or if not, year(s) investigational development initiated; or if not, year patent filed.

[†]Device withdrawn from market, no longer manufactured, or abandoned in development.

^{*}Vision injector versions are licensed to Ferring Pharmaceuticals BV (ZomaJet), SciGen Ltd (SciTojet), JCR Pharmaceuticals (Twin-Jector EZ II), and Teva (Tjet for TEV-TROPIN human growth hormone).

[§]Investigational device, or not yet sold commercially for routine use in humans or animals.

[&]quot;The cool.click and SeroJet devices are the Vitajet 3 design licensed by Bioject to EMD Serono⁵²⁰ for delivery of the Saizen and Serostim brands of somatropin (recombinant human growth hormone) for treatment of growth hormone deficiency and AIDS-wasting diseases, respectively.

The mhi-500 (by The Medical House, acquired by Bespak⁵¹⁰) device contains Vitajet 3 technology licensed by Bioject.

^{**}Canine Transdermal Device is an adaptation of the Bioject Vitajet3 jet injector licensed to Merial (Sanofi group) for delivery of its Oncept DNA vaccine for treatment of oral melanoma in dogs, licensed in the United States in 2010.

[&]quot;The Vetjet (by Merial521) device is the Vitajet 3 design licensed by Bioject to Merial for delivery to cats of PureVax brand of feline leukemia virus vaccine

^{#*}The ZipTip (by Pfizer) is the INJEX design licensed to Pfizer for delivery of Genotropin recombinant human growth hormone.

⁸⁵Zogenix SUMAVEL DosePro delivers sumatriptan indicated for acute migraine and cluster headache. Novel borosilicate glass dose chamber prefilled by drug manufacturer.

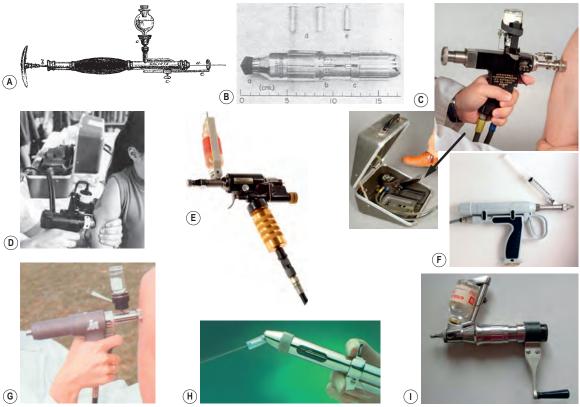


Figure 61-5 Selected Multiuse Nozzle Jet Injectors (MUNJIs). (A) Aqua-puncture device of Galante et Compagnie, 523 circa 1866, of historical interest as first known jet injector. (From Béclard F. Présentation de l'injecteur de Galante, Séance du 18 Décembre, 1866, Prés. Bouchardat. Bulletin de l'Académie Impériale de Médecine (France) 32:321-327, 1866.) (B) Hypospray^{s27} manual MUNJI (Robert P. Scherer Company) for individual patient or caregiver administration; the first modern-era, commercial jet injector, introduced in the 1940s, with reusable, resterilizable MetaPule dose-chamber cartridges. (From Perkin FS, Todd GM, Brown TM, et al. Jet injection of insulin in treatment of diabetes mellitus. Proc Am Diabetes Assoc 10:185-199, 1950.) (C) Ped-O-Jet⁶⁰⁹ (Keystone Industries), the most widely used MUNJI worldwide, before withdrawal from public health use by the 1990s for cross-contamination risk. Its metal spring is compressed by hydraulic fluid pumped by (C, inset) a foot pedal in its carrying case, or by electric pump (not shown). Depth of delivery determined by removable nozzle used, either a subcutaneous/intramuscular (SC/IM) nozzle (shown here) or an intradermal (ID) nozzle (see Figure 61-2E). (D) Hypospray⁵²⁷ motorized high-speed MUNJI (Robert P. Scherer Company), once used for mass campaigns. Power to cock its metal spring was supplied by the hydraulic tubes from the electrical pump in its carrying case (shown in background). (E) Med-E-Jete MUNJI, powered by metal springs compressed either by a CO2 gas cartridge in the handle, capable of about a dozen injections, or by pneumatic hose connection to a separate tank or electric compressor pump. Capable of intradermal injections using a nozzle spacer. A device of this type was confirmed to be responsible for a hepatitis B outbreak in a California clinic. 707-709 Not known to be in current use in the United States. (F) Med-Jet MBX MUNJI (Medical International Technology⁷²⁵), made in Canada and licensed in 2011 in China⁷²⁶ and Russia⁷²⁷ for use in humans. (G) ImoJet spring-powered MUNJI (Courtesy of Sanofi Pasteur. 736) with remote power source (not shown), once used in mass campaigns. (H) MadaJet (Mada International 608), a MUNJI still used for injections in dentistry, podiatry, and perhaps other medical specialties (no known use for vaccination). The teflon sheath over the nozzle is designed to deliver the anesthetic in a spray pattern that penetrates 2-3 mm below the epithelium, producing a wheal that is 3-5 mm in diameter. (1) Hypospray⁵²⁷ professional model MUNJI (Robert P. Scherer Company) uses manual hand crank to cock metal spring. Once used in routine immunization in medical clinics, and in mass campaigns. (Figure 61-5A,503), 61-5B,506 61-5C, C inset, E, courtesy of James Gathany, Greg Knobloch [CDC Photographic Services]; 61-5D, courtesy of Public Health Image Library, CDC; 5F, courtesy of Medical International Technology;725 61-5G, courtesy of Sanofi Pasteur;736 61-5H, courtesy of Mada International [808 [Robert Sorbello]; 61-5I, courtesy of Catalent Pharma Solutions, Somerset NJ.527)

great patient variation, it is no surprise that imaging data suggest that JIs often miss the intended IM or SC compartment. However, this may have little clinical relevance and may be no different from needle injections, for which fat-pad thickness is often underestimated when selecting needle length, or when the needle is not fully inserted. In Russia, an unconventional target tissue—the lung—was reached by "intrapulmonary" jet injections (between the ribs) of antibiotics, bronchodilators, and steroids. In the surprise of the support of the surprise o

Cutaneous delivery

As mentioned (see "Cutaneous vaccination", earlier), there has been a resurgence of interest in skin vaccination because of its potential dosage-sparing capability and minimal invasiveness. Jet injectors for classic ID delivery offer the additional advantage of simplicity over the tedious and difficult classic Mantoux injection, as well as the ability to use existing off-the-shelf vaccines without reformulation. Older MUNJI models, such as the Ped-O-Jet, used specialized nozzles with recessed orifices offset by 45 degrees from perpendicular to the skin, creating an air gap that weakened its jet stream so as to leave the dose in the skin (see Figure 61-2E).

The Ped-O-Jet (and to a much lesser extent other MUNJIs [see Figure 61-5D]) administered tens of millions of smallpox vaccine doses for the first half of the WHO Smallpox Eradication Programme in South America and West Africa in the late 1960s to early 1970s, until invention of the simpler and swifter bifurcated needle. ^{1,81,538} JIs also delivered yellow fever ^{172,173,534,548} and BCG vaccines ⁶¹⁸⁻⁶²³ by the ID route, as well as various tuberculosis skin testing (TST) antigens. ⁶²⁴⁻⁶³² However, variations in

Figure 61-6 Selected Disposable-Syringe Jet Injectors (DSJIs), Licensed or Investigational (as noted). (A) Investigational LectraJet HS (high-speed) motorized DSJI (D'Antonio Consultants International⁶¹³) features built-in motor and rechargeable battery for rapidly compressing metal spring between injections at rates exceeding 600 per hour, with battery capacity of > 3,000 injections per charge. Capable of rapid, fingers-free loading and unloading of single-use syringes from (A, inset) a sterile-packaged, 30-unit magazine for mass vaccination. Magazine may also be mounted on nondominant forearm for vaccinator mobility. Capable of backup manual spring-cocking if batteries are depleted. (B) LectraJet M3 (manual) model DSJI, 613 sharing the same common syringe as the adjacent HS model for rapid, fingers-free loading and unloading of syringes. IM or SC delivery set by varying syringe orifice diameter. Cocked using off-tool carrying case (not shown). Cleared for US marketing by FDA in 2009. Syringes and needle-free vial adaptors also supplied in individually wrapped sterile envelopes for routine immunization (not shown). (C) PharmaJet Stratis⁸² DSJI, for 0.5-mL dose delivery. Delivery IM or SC set by vaccinator technique (fat layer pinched up for SC). Cocked using off-tool carrying case (not shown). (C, inset) Syringe is filled by pulling back and breaking off its blue shaft and thumb tab from conventional single-dose and multidose vials using needle-free vial adaptor (not shown). On insertion into device, any excess liquid is returned to vial to minimize wastage of overfill. Cleared for US marketing by the FDA in 2011. See Figure 61-2J for intradermal DSJI from same device manufacturer. (D) Medi-Jector Vision DSJI, 731 used primarily for self-administration by patients of insulin and other medications. (E) Sumavel DosePro single-use DSJI (Zogenix⁷³⁴), licensed as drug-device combination product for subcutaneous delivery of prefilled sumatriptan for treatment of migraine and cluster headaches. 735 Uses novel, borosilicate-glass dose chamber prefilled by drug manufacturer. (F) J-Tip, single-use DSJI, 733 powered by compressed nitrogen gas. (G) Injex DSJI,732 metal spring compressed by separate cocking device. (H) Imule manufacturer-prefilled DSJI syringe680,737 for Vaxigrip influenza vaccine (Institut Mérieux/Pasteur Mérieux Sérums & Vaccins⁷³⁶). The syringe served as both primary vaccine packaging in a presentation smaller than conventional single-dose glass vial (millimeter scale on left), as well as the single-use disposable syringe for jet injection. Upon removing the label (H, center), inserting into the Mini-Imojet DSJI (not shown), and removing the rubber cap (H, right), the dose was ready for injection. Studied in human trials for five vaccines^{134,648,650} and found successful in immune responses and safety. Subsequently abandoned by the manufacturer. (I) Biojector 2000 DSJI (Bioject Medical Technologies®), capable of subcutaneous and intramuscular injections using syringes of differing orifice diameters. 614 Cleared for US marketing by FDA in 1990s. Powered by compressed CO₂ cartridge, or by connection to separate compressed gas source. An investigational spacer for intradermal delivery (illustrated elsewhere22) creates a 2-cm air gap to weaken the jet stream, leaving the injectate in the skin. Used by US Navy and Coast Guard for approximately one-third million vaccinations per year of sailors and dependents from 1997 through 2011. (J) ZetaJet metal-spring-powered DSJI, 83 features built-in crank for manual re-cocking of metal spring (Bioject Medical Technologies⁸⁹). Uses different auto-disabling cartridges for SC, IM, and ID injections (licensed by US FDA in 2009). See Figure 61-2K for intradermal DSJI from same device manufacturer. (K) Investigational lject DSJI, 83,730 designed for either single-use or reuse upon refitting with its manufacturer-prefilled borosilicate glass dose chamber. (Figure 61-6A, A inset, B, courtesy of D'Antonio Consultants International, Inc.⁸²; 6C, C inset, courtesy of PharmaJet, Inc.⁸²; 6D, courtesy of Antares Pharma⁷³; 6E, courtesy of Zogenix⁷³; 6F, courtesy of National Medical Products⁷³; 6G, courtesy of INJEX-Equidyne Systems⁷²; 6H, courtesy of Bruce G. Weniger; 6I, courtesy of James Gathany (CDC Photographic Services); 6J, K, courtesy of Bioject Medical Technologies.83)

consequent TST reaction sizes 74,633 led WHO to discourage JI use for BCG and TST. 634,635

For devices without a specialized ID nozzle, some vaccinators attach spacers or tubing to a regular nozzle, creating a gap between orifice and skin, which weakens the jet and provides space for a bleb that leaves the dose in the skin.^{22,222,534,535,629,636}

This ID technique was pursued investigationally for local anesthesia 637 and DNA vaccines. $^{638-640}$

As described earlier (see "Poliomyelitis"), WHO and others involved in polio eradication are pursuing the use of DSJIs for needle-free, dosage-sparing ID delivery of IPV once OPV is discontinued for both technical reasons and cost (full-dosage

IPV is 20 times more costly than OPV). 166-169,641 Other vaccines that have been studied for ID delivery by DSJIs include HIV/AIDS 584,639 and influenza, 642 and studies are underway or planned for dengue, 230,579,580 human papillomavirus, and rabies. The PharmaJet Tropis (see Figure 61-2J) and the Bioject ID Pen (see Figure 61-2K) are two new spring-powered DSJIs designed solely for ID delivery of 0.05 and 0.1 mL volumes. The former was licensed in the United States in 2011, and clearance for the latter is expected in 2012.

Immune response

A large body of clinical literature shows the immunogenicity of JIs to be usually equal to, and sometimes better than, that induced by conventional needle and syringe for a wide variety of vaccines. ^{493,494,496} Among inactivated and toxoid vaccines, this includes anthrax, ^{643–646} cholera, ⁶⁴⁷ whole-cell diphtheria-tetanus-pertussis, ^{207,208,538,648} diphtheria-tetanus, ²¹¹ hepatitis A, ^{648–651} hepatitis B, ^{194,652,653} influenza, ^{130,134,140,546,648,654–658} plague, ^{643,644} polio, ⁶⁵⁹ tetanus, ^{554,648,660,661} and typhoid. ^{648,662} With the exception of the variable delayed-hypersensitivity responses to BCG discussed earlier, other live vaccines inducing suitable immune responses when administered by JI into their usual tissue compartment are measles, ^{218,220,226,534,538-540,548,636,663,664} measles-mumpsrubella, ⁶⁶⁵ measles-smallpox, ^{534,538,546,663,666-668} BCG—yellow fever, ¹⁷² and yellow fever. ^{171–173,534,538,539}

The immunogenicity or efficacy of traditional meningococcal polysaccharide vaccines administered by JIs have been demonstrated for serogroup A in the clinic^{202,669} and in outbreaks in the meningitis belt of western sub-Saharan Africa, ^{543,670-674} as well as for serogroup C in South America⁶⁷⁵⁻⁶⁷⁷ and Africa, ^{543,674} Jet injection of the newer Vi capsular polysaccharide typhoid vaccine resulted in 87% seroconversion, versus 69% by needle-syringe (P < .05). ⁶⁴⁸ Clinical studies have not yet been published of JI for modern protein-conjugated polysaccharide vaccines for H. influenzae type b, pneumococcus, or meningococcus.

A wide variety of investigational recombinant nucleic acid vaccines are being delivered in preclinical and clinical trials using various JIs. $^{638,640,678-686}$

Reactogenicity

When JIs and needles used to deliver IM and SC injections are compared in terms of immediate pain, the results depend on the medication involved. Insulin, other nonirritating drugs, and nonadjuvanted vaccines are usually reported to result in either reduced or equivalent pain compared with needles, 525,534,546,559,576,577,605,665 but not always.658 True doubleblinded, needle-controlled studies for such subjective criteria are difficult to implement and are thus rare. In an exception, 654 one group applied earphones to all volunteers and played music loud enough to mask the mechanical noise for the half receiving the DSII injection. All volunteers inserted their arms through a screen to block their view, and the injection of those randomized to the needle-syringe group occurred through the center of a plastic ring the same size as the jet injector nozzle, so that both groups experienced the same skin-contact sensation just prior to injection by a nurse not involved in study assessment. Mild or moderate erythema was measured in 97% of DSJI vaccinees, but only 73% of the N-S group (P = .03). Mild or moderate induration occurred in 93% and 27% of DSJI and N-S groups, respectively (P < .0001).

Vaccines with alum adjuvants or other irritating components tend to result in higher frequencies of delayed local reactions (eg, soreness, edema, erythema) when jet-injected, probably because small amounts remain in the track left through skin and superficial tissue. These include vaccines for diphtheriatetanus-pertussis (whole cell), ^{208,538,551,658} hepatitis A, ^{648,649,651,687} hepatitis B, ^{194,652,653} tetanus, ^{552,554,648,660,661,688} tetanus-diphtheria, ²¹¹

tetanus-diphtheria-polio,⁵⁵¹ and typhoid.^{648,662,689,690} In most cases, local reactions were mild, resolved within days, and were not reported to compromise clinical tolerance and safety. A chronic granuloma was reported after JI vaccination with tetanus toxoid adsorbed to alum,⁶⁹¹ and pigmented macules persisted in a few hepatitis B vaccinees.⁶⁵²

Other adverse events

Bleeding and, less often, ecchymosis are reported to occur at the jet injection site more frequently than with needle injections. 134,525,528,530,531,542,546,559,564,572,575,577,605,633,648,659,692-694 Rarely, the jet stream may cause a laceration if the health care worker has not properly immobilized the limb and injector in relation to each other during injection. 525,530,546,577,648 Rare case reports of other adverse events include transient neuropathy, 695,696 hematoma, 569,697 and eye penetration when used to deliver anesthetic for lower eyelid surgery. 698

Safety of multiuse-nozzle jet injectors (MUNJIs)

Beginning in the 1960s, concerns arose for potential iatrogenic transmission of bloodborne pathogens by MUNJIs, which use the same nozzle to inject consecutive patients without intervening sterilization. 688,693,694,699 Unpublished bench and chimpanzee studies indicated hepatitis B contamination could occur because blood or HBsAg remained in nozzle orifices despite recommended alcohol swabbing between injections. 700,701 Others, however, reported negative results in bench or animal testing when they tried to detect contamination, 529,564,702,703 or they pointed to the lack of epidemiologic evidence of a problem. 551,702,704,705 Then in 1985, Brink and colleagues described a careful animal model in which a Med-E-Jet transmitted lactate dehydrogenase elevating virus (LDV) between mice in 16 (33%) of 49 animals. 706

A few months later, fact superseded theory when a Med-E-Jet caused an outbreak of several dozen cases of hepatitis B among patients in a California clinic. ⁷⁰⁷⁻⁷⁰⁹ Subsequent clinical, ⁷¹⁰ field, ^{711,712} bench, ⁷¹³ animal, ^{714,715} and epidemiologic, ^{716,717} studies added more evidence that MUNJIs could transmit pathogens between patients. This led to warnings and discontinuation of their use by public health authorities, ^{718,719} and to market withdrawal of the Ped-O-Jet and discontinuation of its US military use in 1997. ^{497,720}

In the mid 2000s, a MUNJI was reengineered with disposable caps to try to prevent contaminating blood or tissue fluid from splashing back onto the reusable nozzle, potentially to infect the next patient. The cap contained three plastic washers with axially aligned central holes of about 1 mm in diameter for the jet stream to pass in one direction along the centimeter-wide gap between orifice and skin. However, after injections with saline of volunteers in China who carried hepatitis B virus, 8% of subsequent ejectates into vials—representing the next vaccinees in a clinic or mass campaign—were found by polymerase chain reaction assay to contain hepatitis B antigen. High-speed microcinematography also revealed extensive splashback from the skin during injection with MUNJIS.

This body of evidence supports the conclusion that the design of MUNJIs is inherently unsafe, and any reuse of fluid pathways or unsterile components that are in direct or indirect contact with consecutive patients should be abandoned. Even if contamination could be shown to be extremely rare, it is unlikely that policymakers could be convinced to set any level of acceptable risk.

Despite the recommendations against MUNJI use for vaccination by public health authorities, 723,724 and their withdrawal by the US military, 720 models such as the MadaJet⁶⁰⁸ (see Figure 61-5H) and SyriJet⁶⁰⁷ continue to be used in the United States in dentistry and podiatry and perhaps other specialties. Also, despite the Chinese venue for the definitive study documenting MUNJI cross-contamination, 722 the Chinese Food and Drug Administration was reported in February of 2011 to

have licensed the Med-Jet⁷²⁵ line of MUNJIs in that country for human applications, ⁷²⁶ as did Russian regulators in April, 2011, ⁷²⁷ for vaccination, physiatrics, dermatology, and mesotherapy indications.

MUNJIs allowed a single health worker to vaccinate 600 or more patients per hour. 494,530,532,546 The withdrawal of the device posed challenges for conducting mass immunization campaigns for disease control programs and in response to pandemic or bioterrorism threat. Indeed, while the Soviet biological warfare effort was underway in secret, 728 numerous clinical trials were published of high-speed Russian MUNJIs capable of rapidly protecting soldiers or civilians against potential biowarfare agents such as anthrax, botulism, plague, smallpox, and tularemia. 493,643-646,668,689,690,729

Disposable-syringe jet injectors (DSJIs)

To overcome concerns over MUNJIs and their withdrawal, a new generation of safer, disposable-syringe JIs have appeared since the early 1990s (see Table 61-1 and Figure 61-6). ^{22,494-499,730} Each sterile syringe (cartridge) has its own orifice and nozzle and is discarded between patients. Although many are used for self-administration of insulin, ⁷³¹⁻⁷³³ other hormones, and drugs^{734,735} (eg, see Figure 61-6D,E,F,G), a few are targeted for vaccine administration (see Figure 61-6A,B,C,I,J). Newer systems feature, for example, auto-disabling designs to prevent refilling and reuse on consecutive patients, in contemplation of developing-world markets.

One unique and revolutionary system, developed by Charles Mérieux and colleagues at Institut Mérieux and Pasteur Mérieux Sérums et Vaccins, predecessor companies of Sanofi Pasteur, ⁷³⁶ was the manufacturer-prefilled Imule syringe (see Figure 61-6H) for use in the Mini-Imojet DSJI (not shown). The Imule served as both the primary container for shipment from the vaccine manufacturer and for cold-chain storage, as well as the syringe (with rubber-stoppered bottom) for DSJI delivery, obviating the need for end-users to purchase any disposables. ^{34,660,737} Although demonstrated in the clinic and field to be immunogenic and safe for diphtheria-tetanus-pertussis (whole cell), ⁶⁴⁸ hepatitis A, ^{648,650} influenza, ^{134,648} tetanus, ^{648,660} and typhoid vaccines, ⁶⁴⁸ the system was eventually abandoned upon corporate merger.

The pioneering DSJI for the vaccine market was the Biojector 2000 (see Figure 61-6I), introduced in the United States in the 1990s. 34,83,166,167,231,414,559,566,567,581-584,586,611, $^{651,653,658,678,681-684,696}$ Through the 2000s, it was delivering approximately 1 million IM and SC vaccine doses per year at private, public, and US Navy and Coast Guard immunization clinics in the United States, and it was used in many studies of investigational vaccines (see Table 61-1). Another US company, PharmaJet, entered the market in 2009 with licensure of its eponymous device for IM and SC injections, subsequently upgraded as the Stratis (see Figure 61-6C). Various models have been studied for investigational veterinary^{738,739} and human^{169,579,580,641} applications. By the 2011–12 influenza season, it had shipped several hundred thousand syringes to public health agencies and supermarket and drug chains, until the market collapsed on October 26, 2011, with a surprise FDA announcement affecting all DSJI companies (see "Regulatory matters", later).

Since the 1990s, to meet developing world needs for needle-free vaccination systems that are economical, auto-disabling to prevent reuse, and suitable for both mass campaigns and routine immunization, the US Government (through both the CDC and the US Agency for International Development), the nonprofit organization PATH, ¹⁰⁶ and WHO have promoted the research and development (R&D) and utilization of DSJI technologies. Between 1995 and 2010, the CDC awarded Small Business Innovation Research contracts totaling approximately \$10 million to three competing companies.

One project helped develop the high-speed LectraJet (see Figure 61-6A), with its unique system for fingers-free loading and unloading of cartridges that permits vaccinating at least 600 persons per hour for mass campaigns, ^{34,613} as well as a manual model sharing the same syringes for routine immunization that was found safe and immunogenic for influenza vaccination and was licensed in the United States in 2009 (see Figure 61-6B). ⁶⁵⁴ Another set of contracts assisted in adapting PharmaJet technology for ID delivery, which was licensed in 2011 (see Figure 61-2J). ⁸² A third set of Small Business Innovation Research contracts supported R&D of the ZetaJet (see Figure 61-6J), which was licensed in 2009 and once called the Vitavax. ⁷⁴⁰ Its built-in hand-crank to wind its spring was a feature targeted for developing-country value. ⁸³

PATH¹⁰⁶ has also been a major player in this field, conducting its own R&D as well as assisting the companies developing the DSJIs mentioned here.^{170,741} In 2008, the Bill and Melinda Gates Foundation awarded PATH \$9.8 million to enhance its close collaboration with industry to determine the value, appropriateness, extent of application, and regulatory pathways for DSJIs to deliver vaccines in developing-country immunization programs.⁷⁴² The PATH initiative for DSJIs has included sponsoring and coordinating key policy analyses on ID delivery (including by non-DSJI means), economic modeling, and clinical trials on multiple continents.^{23,24,165,590}

Regulatory matters

In 2009, to prompt public comment before formal promulgation, the FDA published a draft guidance document on pen, jet, and related injectors intended for use with drugs and biological products. ^{743,744} No similar prior effort to clarify the regulatory landscape for these devices had ever been published. Many existing devices, including all the MUNJIs, either had been grandfathered onto the market by virtue of preceding the 1976 cutoff date for medical device regulation, or were cleared for sale on the basis of "substantial equivalence" to such injectors (or to other "predicates" that had themselves been linked back to earlier devices). The draft document covered design and construction features, bench testing aspects, sterility and labeling issues, and most importantly, clinical testing.

Among the many docket submissions commenting on the draft, ⁷⁴⁵ the most common observation was that the proposed guidance document did not distinguish sufficiently between the broad types of devices it covered—including DSJIs, MUNJIs, and pen (needle) injectors—and that their differences deserved distinctions in how they should be regulated in accordance with the "least burdensome" principle. For example, the same level of stringency for demonstrating the safety of MUNJIs because of their cross-contamination risk (as summarized in "Safety of multiuse-nozzle jet injectors", earlier) was to apply also to DSJIs.

Another major critique of the draft guidance was its proposal that before licensure, device manufacturers should identify "the drugs/biologic products that are currently approved and marketed for the dosage, rate, and route of administration proposed for the general use injector". As pointed out in PATH's comprehensive docket submission, 746 this might necessarily require them to conduct clinical trials for every drug or vaccine that a physician may decide to administer. It would thus pose a major obstacle for innovation and development of "general use" devices that are sold empty, that are not labeled or promoted for use with any particular drug, and that rely on the clinical judgment of the physician in practicing medicine in accordance with evidence in the scientific literature and any standards of care (as is the case for needles and syringes). This would apply even for off-label uses not specifically approved by the FDA for the drug involved, as the FDA itself has elegantly stated.747 As of June 2012, no formal promulgation of the guidance document has occurred.

On October 21, 2011, at the peak of the US influenza vaccination season, the FDA issued an unusual and surprising warning to physicians, without the usual advance notice and consultation with affected parties and agencies. It advised against the use of jet injectors to deliver influenza vaccines because there were "no data" substantiating such use. ⁷⁴⁸ The effect was dramatic. Drugstore and grocery chains immediately cancelled orders for what was expected to be several million syringes and thousands of accompanying devices, putting at risk the survival of the small companies involved.

Within days, the FDA replaced the categorical statement on its website with a more nuanced one pointing out that it had not been provided any data from the manufacturers of the six then-current US-marketed influenza vaccines for delivery by JIs. It also cited "limited data"654,658 from two JI studies (both conducted with CDC involvement) demonstrating similar immune responses to influenza vaccines administered by jet injectors and by needles, and therefore that "FDA and CDC believe that people who got their influenza vaccine via jet injector do not need to be re-vaccinated".⁷⁴⁹

The CDC's Advisory Committee on Immunization Practices has for many years recognized jet injection as an effective method of vaccination, ^{723,750,751} based on the substantial literature and experience reviewed in this chapter. It remains unknown whether such a standard of care for accepted public health and medical practice⁷⁴⁷ can restore a market for such off-label use, or whether vaccine manufacturers will undertake new studies and petition the FDA to add jet injection to their product labels. Thus, the future remains uncertain for the small businesses that constitute the global industry for the manufacture of safe, modern jet injector systems for vaccination.

Respiratory vaccination

Since the very early history of immunization, the respiratory tract has been a promising route for vaccine delivery.¹ However, only in 2004 did respiratory vaccines first become a part of routine modern immunization practice, with the licensure of an intranasal (IN), live attenuated influenza vaccine (FluMist) in the United States (see Chapter 18). The major potential advantages of respiratory immunization are that it avoids the risks and concerns associated with parenteral injection, and it generally provides stronger mucosal immunity than vaccination by that route. However, multiple obstacles (see "Challenges for respiratory delivery of vaccines", later) have restricted wider application. As of 2011, FluMist was the only respiratory vaccine in general use. In contrast, the respiratory route is used to deliver a wide and expanding variety of pharmaceutical products. 752,753

The importance of mucosal immunity is that it prevents infection at the portals of entry for the great majority of human pathogens—the respiratory, gastrointestinal, and genitourinary tracts. In contrast, systemic immunity clears infection only after successful invasion, by limiting replication and destroying the pathogens. Ideally, both mucosal and systemic immunity should be raised against targeted pathogens. Strong mucosal immunity may enhance the benefits of immunization for some diseases. For example, by preventing the initial infection, mucosal immunity can reduce the risk of transmission to others, in addition to preventing clinical disease. Prevention of infection at the mucosal surface may be especially important for diseases for which effective systemic immunity has been difficult to achieve, such as tuberculosis and AIDS.

Every mucosal surface available for administering vaccines has been studied with a variety of antigens in animal models, including oral, respiratory, rectal, vaginal, and ocular tissues. Several human vaccines are already licensed and in successful use for delivery by oral ingestion, including those for polio, cholera, rotavirus, typhoid, and adenovirus (see relevant chapters in this book). Although vaginal and rectal vaccines may work, they would have limited acceptability for social, cultural, and practical reasons. The remainder of this chapter will cover only the upper and lower respiratory tract, focusing on device technologies for deposition into these tissues, optimal presentation of antigen to the respiratory immune system, and adjuvants to enhance its immune response.

Antigen presentation and processing in the respiratory tract

Airborne particle entry and airflow

Like pathogens, respiratory vaccine antigens enter as airborne particles through the nares or mouth into airways designed to foil their entry and passage. Particles inspired through the nose are first filtered by the nasal hairs, and then they must traverse the external nasal valves, slit-like passages that limit airflow from the nares into the internal nasal airways. Djupesland and colleagues showed that only 25% of large, high-speed droplets (average, 43 μ m) of a traditional nasal spray reach beyond the external nasal valve. This nasal filtration system may be bypassed by oral delivery via mask or mouthpiece. However, most large, high-speed particles are stopped in the mouth.

Small particles inhaled via nose or mouth share a common pathway through the oropharynx, larynx, and trachea. The bifurcation of the trachea into the right and left bronchi starts a series of bifurcations, providing further surfaces to trap airborne particles. Only very small, light, and slow-moving particles succeed in navigating the tortuous pulmonary passages to deposit in the lower airways. The smallest particles (≤ 3 μm) may reach the alveoli, where they can be rapidly absorbed into systemic circulation. The complex branching of the lung passages also results in an astonishing alveolar surface area, exceeding 100 square meters in a human adult male, compared with an average of only about 150 square centimeters (0.015 m²) in the nasal airways. The lower airways in humans do not typically have organized lymphoid tissues, but they do have abundant intraepithelial dendritic cells and alveolar macrophages that process antigens. The

Particle deposition, movement, and uptake

In the internal nasal airway, particles deposit on the nasal mucosa covering the turbinates and then join the flow of mucus that is swept by ciliated epithelia toward the pharynx, where it is swallowed. Immune surveillance of antigens in the flow of mucus begins as they are taken up into epithelial cells, intraepithelial dendritic cells, surface macrophages, and microfold (M) cells. 757,758 M cells are specialized epithelial cells that take up macromolecules, viruses, and bacteria by endocytosis, and then present them to lymphocytes and dendritic cells that congregate in invaginated pockets of the M cells; these pockets communicate with the extracellular space (see Figure 61-1B). 757-760

The predominant organized lymphoid tissue of the human respiratory tract is located in the pharynx, where the adenoids and other tonsils (collectively known as Waldeyer's ring) surround the nasal and oral passages. The epithelium overlying these tissues is rich with M cells. 761 Increasing the deposition of vaccine antigen in the posterior nasal passages and nasopharynx near Waldeyer's ring may be desirable to maximize the immune response. Breath actuation of a nasal spray and nasal inhalation of smaller aerosol particles (5 to 20 μm) are two methods to increase nasopharyngeal deposition (see Figure 61-9A,B). 754,762

Regional processing

Antigen-presenting cells from the respiratory tract drain to regional lymph nodes, where the B cells preferentially switch to IgA plasmablasts. These plasmablasts "home" back to the

airway epithelium to provide antigen-specific IgA protection. To cells also play a major role in mucosal immunologic memory responses. Some lymphocytes exposed to antigen in the respiratory tract migrate to provide protection at remote mucosal sites, such as the vagina. This integrated network of immune cells and tissues is known as the *common mucosal immune system*. To special security tract is exposed to a myriad of nonpathogenic macromolecules, there are mechanisms for downregulating the immune response to antigenic exposure. This immunologic tolerance must be considered when developing respiratory immunization strategies. To security response to antigenic exposure.

Challenges for respiratory delivery of vaccines

Identifying target tissues

The first challenge in respiratory immunization is determining the appropriate target tissues. Most respiratory drugs traditionally target two areas. For example, the nasal passages are the desired site of action for decongestants, and the lower airways are targeted by asthma medications. The optimal target tissues are not yet understood for most potential respiratory vaccines, and they vary for different antigens. The pharyngeal tonsils are likely candidate targets because of their key role in immunologic priming, but some vaccines may require deposition in the lower airways for uptake by alveolar macrophages and dendritic cells. Scientific methods for evaluating and comparing different target tissues are not yet well developed.

Applying animal models

A second challenge is the difficulty in selecting animal models and extrapolating their results for human respiratory vaccine delivery. Interspecies differences in respiratory immunologic tissue organization limit interpretation of animal target-tissue research results for humans. Moreover, the size and anatomy of the respiratory tracts of common research animals differ greatly from those in humans. For example, in small animals such as rodents, nose drops may deposit to the entire respiratory tract, which would not be the case in humans. Balmelli and colleagues estimated that 30% of 20 μL of vaccine given to mice as IN drops deposited into the lungs. 767

Many viruses and bacteria that infect humans do not grow well in animal models. For example, species-specific differences in the distribution of sialic acid receptors on cell surfaces is a crucial factor in tissue and host specificity of influenza A viruses, which limits the number of animal models suitable for influenza research. ⁷⁶⁸ Such species-specific differences can make it difficult to use animals to study attenuated live vaccines or vaccine vectors, as well as to challenge animals to assess protection. This impedes the development of safe and effective respiratory vaccines for humans.

Delivering consistent dosages

A third challenge for respiratory immunization is dosage accuracy. The mass or volume of the antigen delivered depends on many factors, including variability in performance by the respiratory delivery device, the behavior and technique of the person administering the vaccine, and differences in the anatomy and physiology between vaccinates (animals) or vaccinees (humans). Fortunately, for many vaccines there is a wide margin between the dosage necessary to induce protection and the dosage at which the risk of adverse events increases.

The licensure in 2006 in the United States and Europe of the first inhalable insulin (Exubera), a drug for which dosage accuracy and consistency is critical, suggests that this challenge can be overcome for respiratory vaccines. The Weever, the commercial failure of Exubera poses a cautionary example for developers of potential aerosol vaccines. The product was withdrawn

from the market in 2007 by the manufacturer because of lack of sales, after nearly \$3 billion was invested in development and licensure. The major reasons cited for this market failure were patient and physician concerns about long-term safety, complexity and size of the delivery device, increased cost compared with injection, and the availability of newer injection devices such as insulin pens.⁷⁷¹

Predicting protection from immune response

A fourth major challenge is the lack of accepted correlates of protection of mucosal immunity. In contrast, for many diseases there are laboratory assays to measure well-established criteria for systemic immunity—such as antibody titers above certain cutoffs—that have served for many years to predict protection from disease. In the absence of accepted serologic or cellular correlates of protection induced by mucosal vaccines, clinical trials must use specific disease-prevention endpoints, which can make the studies much larger and more expensive.

Ensuring safety

Several immunization safety issues represent further challenges for respiratory vaccines. One is the risk that vaccine antigen (live or inactivated), adjuvant, or excipients might affect nearby cranial nerves, ⁴⁶ or might travel along the olfactory nerve through the cribriform plate into the brain, with resulting adverse central nervous system effects. Vaccines targeting the lower airways may induce or exacerbate bronchospasm or pulmonary inflammation, which can be life threatening. Another risk is cross-contamination: respiratory pathogens from one patient may contaminate the respiratory immunization device and be spread to subsequent patients. ⁷⁷² Also, vaccine aerosols may spread beyond the intended vaccinee and affect other persons in the vicinity. Finally, live virus or bacterial vaccines might pose an increased risk to immunocompromised persons if delivered via the respiratory tract.

Designing practical delivery techniques

Remaining challenges relate to the delivery devices. Although many already exist for delivering drugs to the respiratory tract, very few are designed for vaccines. Most respiratory drug devices deliver repetitive doses to a single patient. In contrast, the expected usage for vaccination devices is to deliver single doses to multiple patients, which raises the cross-contamination issue. Although single-use, disposable devices or device components could solve this problem, they must be inexpensive to be cost effective.

Some aerosol-drug delivery devices require patient education to obtain the needed cooperation for adequate dose delivery. This may be difficult in the brief time typically involved in vaccination. In young children, who receive many vaccines, some respiratory delivery methods are not effective.

Although current respiratory drug delivery devices typically target the anterior nasal passages or the lower airway, respiratory vaccination may work best in the quite different target of the pharyngeal tonsils. In theory, ideal nasal delivery devices would prolong effective antigen presentation by depositing over a large surface area in the internal nasal airway, allowing mucus flow to move vaccine gradually across the tonsils.

Advancing the art

New delivery technologies to achieve respiratory immunization are required if this route is to become practical and accepted. As a young field, published research is limited on relevant devices in animals or humans. In most reported animal studies, the delivery device is not mentioned at all, or a laboratory pipette was used for intranasal instillation, which would be unsuitable for humans. For most respiratory devices designed for humans, testing is very difficult or impossible in an animal model.

Last, perhaps the most significant challenges to implementation of respiratory vaccination and other novel vaccine delivery systems in routine immunization practice are the regulatory requirements needed to ensure that the novel systems are safe and effective. The studies and clinical trials needed can be extremely expensive. Vaccine manufacturers are typically reluctant to assume such cost and risk to relicense an existing product already delivering profits, unless the potential benefits and market advantages would be significant. The best opportunity to bring alternative delivery into routine practice may be to use new delivery systems from the start for new vaccines early in their development and licensure process.

Current progress in respiratory tract vaccination

Wet versus dry aerosols

Vaccines can be delivered to the respiratory tract directly as either liquid or dry-powder aerosols. All currently licensed vaccines (for injection, or for oral or nasal delivery) are either stored and administered as a liquid, or stored in dry form and reconstituted to a liquid just prior to administration. Delivery of liquid aerosols is thus closer to usual practice. It is also generally easier to perform animal studies by generating aerosols from existing liquid formulations. Dry aerosols require changes in the formulation and manufacture of the vaccine to achieve and sustain vaccine potency and powder dispersability. If these challenges can be met, dry aerosols have several advantages over liquid aerosols (see "Dry-powder formulations for respiratory delivery", later).

Respiratory vaccination devices

AccuSpray[™] nasal sprayer

The only device currently licensed and in use in the United States for respiratory vaccine delivery is the AccuSpray,⁸⁴ which is used for FluMist live attenuated influenza vaccine (LAIV).⁸³⁴ The device is a sterile, single-patient-use, disposable, prefilled glass syringe fixed with a nonremovable plastic nozzle (Figure 61-7C,D). Its total dose is 0.2 mL, of which 0.1 mL is sprayed consecutively into each nostril. An attachment on the plunger tells the user when to switch nostrils. FluMist vaccination delivered by AccuSpray is highly effective in most populations (see Chapter 18).

Key advantages of AccuSpray delivery are simplicity of use, low cost, disposability outside of sharps waste, and difficulty to refill and reuse. The large particle sizes generated by the sprayer minimize deposition to the lower airways, reducing the risk of adverse pulmonary events. A limitation of the system is that the particle size emitted depends on the speed at which the vaccinator depresses the plunger. The median diameters of the particles can range from 200 μm or greater at plunger speeds of up to 33 mm/sec, to 50 μm or less at speeds of 80 mm/sec and greater. Although this wide variability might in theory affect the efficiency of vaccine deposition, LAIV by AccuSpray produces a high rate of protective immunity at the current dosage of 10^7 fluorescent focus units (FFU) for each of the three strains included in the vaccine.

To assess the potential of IN administration of measles vaccine, Simon and coworkers conducted a clinical trial with live attenuated (Moraten Berna) measles vaccine using the

Figure 61-7 Selected Devices for Respiratory Delivery of Liquid Aerosol Vaccines. (A) and (B) Investigational Classic Mexican Device for aerosol vaccine delivery, illustrated by component diagram (A) and use in clinical trials (B). A nonmedical electric compressor (not shown) delivers roughly 9 L of air per minute at a pressure of 30 to 40 psi (207 to 276 kPa) to a jet nebulizer that is kept in crushed ice to maintain vaccine potency. The vaccine aerosol (roughly 0.15 cm³ of particles averaging 4.3 μm in diameter) is delivered through a disposable paper cone held close to the patient's face for 30 seconds. ⁷⁷⁶⁻⁷⁷⁹ (From Valdespino-Gómez JL, de Lourdes Garcia-Garcia M, Fernandez-de-Castro J, et al. Measles aerosol vaccination. Curr Top Microbiol Immunol 304:165-93, 2006 [Fig. 1, p. 169].) (C) and (D) AccuSpray nasal spray syringe (Becton, Dickinson and Co.⁸⁴) produces an aerosol plume of particles reported from 50 to 200 μm in diameter, depending on plunger speed. ⁷⁷³ (D) AccuSpray used for intranasal delivery of FluMist influenza vaccine (Medimmune, Inc.⁸³⁴). Prefilled liquid vaccine is stored refrigerated for single patient use. The total volume is 0.2 mL. A dose separator interrupts delivery at 0.1 mL and, when reset, allows the remaining 0.1 mL to be administered into the opposite nostril. (E) and (F) Investigational AeroVax prototype (AerovectRx, Inc., ⁸⁰⁸ developed by Centers for Disease Control and Prevention and Creare, Inc.⁸⁰⁵). The (E) nebulizer utilizes battery-powered piezoelectric energy to drive an aerosol from a disposable drug cartridge via a microperforated mesh plate through a disposable patient interface, such as (F) nasal prong in patient nostril, oral prong, or mask (not shown). Droplet diameters can be tailored from < 5 μm to 10 to 25 μm for upper or lower airway delivery, respectively. (Figure 61-7A, ⁸⁰⁰ 7B, courtesy of Nuphar Rozen-Alder [Becton, Dickinson and Co.] ⁸⁴⁰; 7E, F, courtesy of James Gathany [CDC Photographic Services].)

AccuSpray. IN administration produced protective serum antibody titers in only 50% of nonimmune individuals, compared with protective titers in 100% of volunteers who received the vaccine by the SC route. The Notably, IN vaccination resulted in increased production of measles-virus-specific secretory IgA (sIgA) in oral fluid and nasal washes among previously nonimmune individuals, but without evidence of a systemic immune response. The Notable 10 in the Nota

Classic Mexican Device nebulizer

Another respiratory immunization device that has been used in humans is the jet nebulizer system known as the Classic Mexican Device (CMD; see Figure 61-7A,B). With slight modifications, this nebulizer system was used to deliver live attenuated measles vaccines in multiple clinical trials in Mexico and South Africa, and also to vaccinate over 3 million Mexican children against measles in a mass campaign.⁷⁷⁶⁻⁷⁷⁹ The system consists of a general-use (non-medical-grade) compressor that delivers air to a jet nebulizer (from iPi^{780,781}), which holds the vaccine in crushed ice to maintain potency during the vaccination session. The vaccine aerosol is delivered through reusable plastic tubing to a single-use, disposable paper cone (modified from a drinking cup), which is held close to the patient's face for 30 seconds. Typically, the aerosolized dose volume is roughly 0.15 mL, and the mass median aerosol diameter of droplets is 4.3 μm.⁷⁸²

In a recent study by Bennett and colleagues, the dose for each child was delivered from the CMD into a single-use, disposable plastic bag to avoid the risk of cross-contamination of the tubing. This reservoir was then separated from the tubing before the child inhaled its contents via a one-way valved mask. Preschoolage children vaccinated from the aerosol reservoir developed higher antibody GMTs than did subjects vaccinated by the SC route. 783 In a study that assessed the distribution of viable vaccine virus across the range of droplet sizes emitted from a CMD, Coates and coworkers estimated that 30% of infective viral particles were contained in droplets with diameters of 5 μ m or less, and 23% were in droplets of greater than 10 μ m. 784

Although the CMD has demonstrated a level of safety and immunogenicity, it is heavy, cumbersome, noisy, and requires outlet (mains) electricity and crushed ice. It is thus not practical for routine vaccination.

Measles Aerosol Project nebulizer

Because of the encouraging results of early measles aerosol vaccine trials (see "Classic Mexican Device nebulizer", earlier, and "Live viruses", later), in 2002 the WHO, in partnership with the CDC and the American Red Cross, initiated the Measles Aerosol Project (MAP). Its goal is licensure of at least one live attenuated measles vaccine and its associated aerosol delivery system in the developing world.⁷⁸⁵ The project documented immunogenicity and safety (ie, the lack of local or systemic toxicity) in animal studies.786 Three existing therapeutic nebulizers were used for phase 1 clinical trials: the AeroEclipse,787 the ComPair, 788 and the Aeroneb. 789 The selection criteria were (1) critical performance data, (2) usability under field conditions, (3) vaccine potency during nebulization, 790 and (4) existing licensure for other uses. Measles vaccine delivery by the three devices, delivered to 145 subjects in India, was reported to be safe, well tolerated, and immunogenic.785

A modified version of Aeroneb device was selected for use in the phase 2/3 pivotal trial initiated in 2009 by the MAP.⁷⁹¹ The study was a randomized, open-label, active-control, non-inferiority trial of the measles vaccine in unvaccinated healthy infants from 9 to 11.9 months of age. As of November 2011, study results had not been released or published.⁷⁸⁵

Other aerosol devices studied in vaccine research

The OptiMist is a breath-actuated nasal-spray device that delivers liquid or dry-powder aerosols only during oral exhalation. The Because this raises the soft palate to close the connection between

nose and throat, pulmonary deposition is avoided, and delivery to the posterior nasal segments is increased (see Figure 61-9A,B). The a human study, inactivated influenza vaccine self-administered using the OptiMist resulted in significant increases in virus-specific IgA in nasal secretions, as well as protective levels of virus-specific serum antibodies, after two doses in more than 80% of subjects. The secretary deposition of the secretary deposition deposition

A Combitips Plus pipette dispenser⁷⁹⁴ was used to deliver a dry-powder *Neisseria meningitidis* IN vaccine to human subjects. Those vaccinated by the IN route had serum bactericidal antibody titers comparable to that of those vaccinated by conventional injection, and 92% of IN vaccinees had protective titers after the second dose. One third of IN vaccinees reported mild side effects, compared with the two thirds of injection vaccinees who reported mild injection pain.⁷⁹⁵ Another dry-powder inhaler, the single-use, disposable Twincer⁷⁹⁶ (Figure 61-8E), dispersed an inulin-based dry-powder subunit influenza vaccine with an aerodynamic particle size distribution suitable for pulmonary administration.^{797,798}

Two unique dry-powder delivery devices, the PuffHaler⁷⁹⁹⁻⁸⁰¹ (see Figure 61-8A,B) and the Becton, Dickinson (BD) Solovent84 (see Figure 61-8C,D), were developed and tested as part of an initiative to develop a measles vaccine dry powder (MVDP). The project is led by Aktiv-Dry, LLC⁷⁹⁹ (see "Drypowder formulations for respiratory delivery", later). Each device disperses MVDP into an inexpensive, single-use, disposable reservoir from which the patient inhales, eliminating the risk of cross-contamination. After successful demonstration in the cotton-rat model,802 MVDP was evaluated in rhesus macaques using PuffHaler and BD Solovent via mask and via the direct IN route from the devices. 803 Respiratory delivery induced robust, significant measles-specific humoral and T-cell responses with no adverse effects. When challenged more than 1 year later, the MVDP-vaccinated macaques were protected from infection with wild-type measles virus.803 In other studies, the BD Solovent was effective for direct nasal delivery of influenza vaccine to rats, and of anthrax vaccine to rabbits. 101,804

The CDC developed the AeroVax nebulizer (see Figure 61-7E,F), in collaboration with Creare, Inc. ^{22,805} It utilizes a disposable patient interface (nasal prong, oral prong, or mask) and a disposable drug cartridge to prevent cross-contamination. Disposable drug cartridges can be manufactured to generate custom particle size distributions (eg, 10- to 25-µm droplets for upper-airway delivery, or droplets of 5 µm or less to reach the lower airway). Delivery of live attenuated measles vaccine via nasal prong was shown to be safe and immunogenic in macaques. ⁷⁸⁶

A 15-second aerosol delivery by the AeroVax device of influenza virus X31 induced a robust immune response in mice, which protected them against homologous (X31) and heterologous (PR8) influenza challenge. 806 Nasal aerosol delivery of LAIV to ferrets elicited high levels of serum neutralizing antibodies and protected them from homologous virus challenge at conventional (median tissue culture infective dose [TCID $_{50}$], 10^7) and significantly reduced (TCID $_{50}$, 10^3) dosages, and provided a significant level of subtype-specific cross-protection. 807 AerovectRx, Inc., 808 acquired the rights to manufacture and distribute this technology.

An investigational device for nasal delivery of dry-powder vaccine to nasopharyngeal tissues only was developed by the CDC and Creare, Inc. 805 (see Figure 61-8F). It operates by patient exhalation through the mouth, blowing the powder into the nose while simultaneously generating air flow that limits entry to the lower respiratory tract. Its deposition pattern to targeted nasal tissues was documented in three-dimensional plastic models developed by CFDRC, Inc., 809 from in vivo computerized tomography of a child's head (Figure 61-9C,D, and see Figure 61-8F).

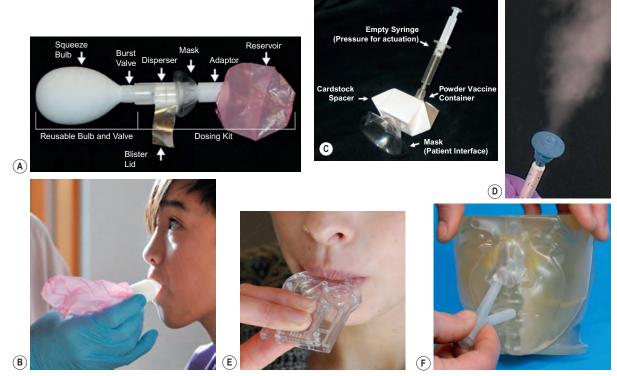


Figure 61-8 Selected Devices for Respiratory Delivery of Dry-Powder Aerosol Vaccines. (A) Investigational PuffHaler dry-powder inhaler (Aktivdry, LLC799). Air from the squeeze bulb lofts vaccine powder from the disperser into the reservoir once the pressure threshold of the burst valve is exceeded. (From Kisich KO, Higgins MP, Park I, et al. Dry powder measles vaccine: particle deposition, virus replication, and immune response in cotton rats following inhalation. Vaccine 29:905-912, 2011 [Fig. 1, p. 907].) (B) Patient inhales from the single-use-only reservoir of PuffHaler after detachment from the device, either directly (as shown) or via a disposable mask (not shown). (From Lay J. The man fighting measles one breath at a time. Coloradan Magazine [University of Colorado, Boulder], March 2011, [photo, p. 10, by Glenn Arakawa].) (C) Investigational Solovent dry-powder inhaler prototype (Becton, Dickinson and Co.84). Air from the empty syringe ruptures the membranes of the vaccine container, releasing into the cardstock spacer a plume of dry powder. Patient inhales from the cardstock spacer directly, or via a mask. The vaccine container (capsule), spacer and mask are single-use disposables. (D) Plume of powder upon release from Solovent in open air for visualization purposes. (E) Investigational Twincer⁷⁹⁶⁻⁷⁹⁸ single-use, disposable, dry-powder inhaler for pulmonary delivery (University of Groningen). The drug formulation is stored in the snap-together plates of the device in an aluminum blister for maximal moisture protection. The powder becomes available for inhalation upon pulling a foil cover that protrudes from the rear of the inhaler (not shown). (F) Investigational nasal dry powder inhaler developed by CDC and Creare, Inc. 805 A prefilled cup (shown between right thumb and forefinger) containing the powdered vaccine is opened by its attachment to the device. The breath of the patient blowing into the device tube carries the dry powder into the nose. In theory, dispersion during patient exhalation limits pulmonary deposition from the posterior nasal space. The plastic face is a phantom model of the airway of a 5-year-old child constructed according to in vivo computerized tomography (CFDRC, Inc. 2009). (Figure 61-8A, courtesy of Scott Winston [Aktivdry, LLC. 2009] 8B, courtesy of Glenn Asakawa [University of Colorado]801; 8C, courtesy of Becton, Dickinson and Co.84 [Kenneth Powell]; 8D, courtesy of Becton, Dickinson and Co.84 [Vincent Sullivan]; 8E, courtesy of University of Groningen [A. H. de Boer]; 8F, courtesy of Darin Knaus [Creare, Inc. 805].)

Delivery vehicles for vaccination via the respiratory tract

Once the device has delivered vaccine to the appropriate region of the respiratory tract, sufficient quantities of the antigen (and adjuvant if needed) must penetrate mucosal or alveolar barriers to gain access to appropriate cells to activate the immune system. The vehicles or vectors that can be used for this purpose include live attenuated viruses (including those acting as vectors for exogenous antigen), live attenuated bacteria (including vectors), commensal bacterial vectors, virosomes, virus-like particles (VLPs), liposomes, lipopeptides, immune stimulating complexes (ISCOMs), microparticles, and nanoparticles. 810-814

Live viruses

Viruses are prototypical antigen-delivery vehicles because they enter and commandeer cells to replicate themselves, thus multiplying the available antigen that they encode. Also, viruses can induce a natural adjuvant effect through activation of chemokines and cytokines. The most widely studied respiratory delivery vehicles are live attenuated strains of pathogenic viruses. 815-833 Their major risks are possible reversion to virulence, potential neurotoxicity via the olfactory route, and potential pathogenic effects in immunocompromised persons.

Influenza

Cold-adapted LAIV (FluMist)⁸³⁴ is the only vaccine currently licensed in the United States for delivery by the IN route. Its development, testing, and licensure are reviewed in detail in Chapter 18. LAIV delivered by the IN route demonstrates several potential benefits of this method. It produces both mucosal and systemic immunity, and it provides higher protective efficacy than injected inactivated vaccine in young children.⁸³⁵⁻⁸⁴¹ It provides heterotypic immunity against influenza strains that had antigenically drifted from the vaccine strains.⁸⁴² It may reduce the risk of influenza transmission because it reduces respiratory shedding among immunized children challenged later with a vaccine virus.⁸⁴² Finally, modest coverage with LAIV among school children reduced influenza-related illness rates in unvaccinated adults in a community.⁸⁴³

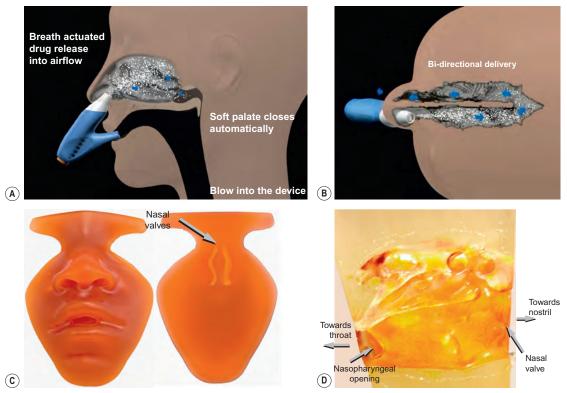


Figure 61-9 Modeling and Evaluation Techniques for Nasal Deposition of Vaccine Aerosols. (A) Sagittal and (B) horizontal sections rendered by computer-assisted imaging to illustrate intranasal delivery by investigational Optimist nasal spray devoice (OptiNose, Inc. 754.792). Exhaling into the device against pressure lifts the soft palate, closing off the nasal cavity and limiting pulmonary deposition. The breath actuates the release of liquid or powder particles, which are carried beyond the nasal valve to target sites. Image (B) shows the air flow passing through the communication posterior to the nasal septum and exiting through the other nasal passage. (C, left) Front and (C, right) rear views of a coronal section of the CFDRC⁸⁰⁹ CT-based model shown and described in Figure 61-8F. Its plastic is darkened to highlight the external nasal valves. The rear view (C, right) shows the nasal valves, the transitional area between the squamous epithelia of the nares, and the mucosal tissue lining the internal nasal airway. (D) Medial section of the right internal nasal airway of a plastic, phantom model shown and described in Figure 61-8F (CFDRC, Inc. 809). The external nares and face (not shown) are to the right, proximal to the nasal valve. The pharynx (not shown) is to the left, distal to the nasopharyngeal opening. The red-pigmented powder indicates the deposition pattern from the investigational nasal dry-powder inhaler shown in Figure 61-8F. (Figure 61-9A, B, courtesy of OptiNose⁷⁰² [Per Gisle Djupesland]; 9C, courtesy of James Gathany (CDC Photographic Services); 9D, courtesy of Creare, Inc. 805 [Darin Knaus].)

Measles

After influenza, measles is the next-most-studied disease for vaccine delivery via the respiratory tract, pioneered by Albert Sabin in the later years of his career. Sadar This evidence base prompted the Measles Aerosol Project, described earlier. Reviews and meta-analyses of multiple clinical studies revealed three basic immune-response patterns after measles vaccination.

First, drops or sprays delivered to the conjunctiva, or to the oral or nasal mucosa, produced inconsistent immune responses. ^{226,851-859} Second, delivery of small-particle liquid aerosols via pulmonary inhalation to children 10 months of age or older typically produced immune responses in very high proportions of subjects. These responses to aerosol vaccinees were usually equivalent to or greater than the responses to njected vaccines. ^{778,779,783,851,852,856,857,860-870} For example, Dilraj and colleagues found that 96%, 94%, and 86% of schoolchildren who received the aerosol measles vaccine had antibody titers of greater than 300 IU/mL at 1, 2, and 6 years after vaccination, respectively, compared with 91%, 87%, and 73% among injected vaccinees. ^{779,867,868}

The third pattern noted was generally lower immune responses for the aerosol route, compared with parenteral injection, among children younger than 10 months.776,777,844-847,855,862,865,871,872 For example, Wong-Chew and coworkers found vaccination of 12 and 9 month old infants by injection induced immunity in 100%, but by aerosol route in only 86% and 23%, respectively.776,777 One hypothesis was that the very low respiratory minute volume of young infants results in too small a dose of aerosol vaccine in that period of time. A follow-up study by Wong-Chew and colleagues demonstrated that increasing exposure time to aerosol measles vaccine elicits immune responses that are comparable to those seen when an equivalent dose is administered by the SC route in 9 month old infants.87 With regard to vaccine safety, the same reviews and metaanalyses^{229,848–850} noted that no severe adverse events were reported after aerosol measles vaccination in any of the studies. Rates of minor adverse events, when reported, have typically been less than or the same as vaccination by injection. 776,777,779,864,866,874 Experience in mass campaigns was similar, with de Castro and colleagues reporting no serious adverse events among more than 3.7 million children in Mexico vaccinated by aerosol.875

Rubella and mumps

IN delivery of live attenuated rubella vaccine was investigated during the 1970s in many clinical trials. ⁸⁷⁶⁻⁸⁸³ Ganguly and coworkers demonstrated that IN drops or spray of vaccine virus produced mucosal IgA antibody, equivalent serum IgG antibody, and better protection against reinfection compared with SC vaccination. ⁸⁷⁸ The subjects who received the IN challenge, however, had higher rates of mild adverse events, usually rhinitis and sore throat.

In more recent studies, Bennett and colleagues found that aero-sol vaccination of preschool children with a combination measles-mumps-rubella vaccine produced antibody responses to rubella and mumps equivalent to those produced by injection. 783 Sepúlveda and coworkers found that aerosolized measles-rubella combination vaccine in school-age children not previously vaccinated against rubella produced high levels of rubella immunity, equivalent to that seen after SC injection. Fewer adverse events were reported in the aerosol group. 864 Diaz Ortega and colleagues found that measles-mumps-rubella vaccination by aerosol in college students produced immune responses similar to those produced by injection, with seropositivity retained in all vaccinees 1 year after vaccination. 869,870

Live viruses as vaccine vectors

Recombinant viruses acting as vectors by incorporation of a gene expressing a heterologous antigen have advantages similar to those of conventional attenuated live virus vaccines. They deliver the genetic code for the antigen into cells, and it is replicated to activate the immune system. Viruses used as vaccine vectors should, ideally, have very low pathogenic potential, even in immunocompromised people, as well as the capacity to incorporate the necessary foreign genes for desired antigens, promoters, and adjuvants.

Viruses that naturally infect or grow in respiratory tissues are especially well suited as vectors for respiratory immunization. Some studied in animal models include adenoviruses, alpha viruses, poxviruses, baculovirus, vesicular stomatitis virus, and adeno-associated virus.884-899 Adenovirus vectors delivered IN in several animal models produced immune responses against many diseases. 286,288,900-920 For example, defective-complex adenovirus containing Ebola virus genes protected nonhuman primates against aerosol challenge with two Ebola species. 919 Vaccinia strains such as modified vaccinia Ankara (MVA) have also been used effectively as vectors for respiratory immunization. 921-927 An MVA vector expressing an HIV-1 antigen induced, by the IN route, antigen-specific mucosal CD8+ T cells in genital tissue and draining lymph nodes of mice, along with serum and vaginal antibodies. 927 One caveat for the use of vectored vaccines is that preexisting immunity, in the population, to the vector virus, either by natural exposure or by previous use in another vaccine, may reduce its effectiveness. However, Song and colleagues reported a series of studies in which adenovirus-vectored vaccines delivered as a fine aerosol to the lungs produced strong immunogenicity even in animals with preexisting anti-adenoviral immunity, suggesting that pulmonary delivery may overcome this limitation to viral vector vaccines.928

Live bacteria

Animal models of respiratory immunization have been used to study attenuated respiratory pathogen vaccines such as *Mycobacterium bovis* (BCG) and attenuated *Bordetella pertussis*, as well as nonrespiratory pathogens such as *Salmonella* and *Shigella* acting as recombinant vectors. P29-935 Mouse studies also demonstrated an improved immune response to conventional BCG vaccine delivered by the IN route or by aerosol inhalation, compared with injection. P23,936-942 The studies that included a challenge found that the respiratory route provided better protection than injection. Attenuated *M. tuberculosis* has also been immunogenic by the respiratory route. P43

As vectors, bacteria have an advantage over viruses because of their higher capacity for insertion of the heterologous genes expressing antigens, adjuvants, or plasmids for DNA vaccination (see next section). Still Recombinant BCG has been used to express various heterologous antigens, including simian immunodeficiency virus, Borrelia burgdorferi, and Streptococcus pneumoniae. Steptococcus pneumoniae. Still Live attenuated Bordetella pertussis vaccine delivered by the IN route protected mice from Bordetella challenge. Still Similar IN delivery of recombinant B. pertussis expressing antigens of Clostridium tetani, H. influenzae, N. meningitidis, and Schistosoma mansoni induced strong immune responses in mice. Still Schistosoma mansoni induced strong immune responses in mice.

Attenuated recombinant *Salmonella* vaccines produced strong immune responses against a wide variety of pathogens when delivered by the IN route to rodents. ^{935,956-965} Similar results were reported for IN *Shigella* vectors carrying enterotoxigenic *E. coli* and tetanus genes. ^{966,967} Commensal bacteria such as food-grade strains of *Lactococcus, Lactobacillus*, and *Streptococcus gordonii* have also been explored as vaccine vectors. ⁹⁶⁸⁻⁹⁷² Bacterial expression of adjuvants such as cholera toxin B, interleukin (IL)-6, and IL-12 has been shown to increase the immune response to respiratory vaccines. ^{936,973}

A potential risk of administering live microbes was revealed in mice that developed dosage-dependent granulomatous BCG infiltration of the lungs after IN but not SC vaccination of BCG.⁹³⁷ As with viruses, preexisting immunity to the bacterial vector may diminish the immune response.⁹⁷⁴

DNA vaccines

DNA vaccination involves the delivery of eponymous plasmids directly into host cells to express the desired antigens. 975 Delivery of naked DNA to the respiratory tract as a vaccine has been studied in animal models for many diseases. 439,926,976-995 For example, Kuklin and associates found that nasal delivery of a herpes simplex DNA vaccine generated higher levels of vaginal IgA than by the IM route, although the IM vaccine produced stronger serum antibodies and better protection against challenge. 995 Live attenuated bacteria, especially Salmonella and Shigella, have been vectored to produce DNA for IN vaccination. 966,996-999 For example, cotton rats vaccinated with attenuated Salmonella vaccine expressing DNA encoding for measles antigens resulted in significant reduction in measles virus titers in lung tissues after challenge. 1000 Virosomes, liposomes, and microparticles as carriers of vaccine antigens-discussed next-have also delivered DNA by the respiratory route. 1001-1005

Non-replicating vaccine delivery systems

Synthetic constructs, including liposomes, virus-like-particles (VLPs), virosomes, immunostimulating complexes (ISCOMs), microparticles, and nanoparticles, are nonreplicating delivery systems that mimic live viruses in how they appear to the immune system to enhance antigen delivery (they may also carry adjuvant). Their terminology is not mutually exclusive and some terms are used synonymously. The particles are about the same size as viruses, allowing similar uptake by antigen-presenting cells. Many include a lipid component to increase cell membrane permeability, and they may contain unrelated viral or bacterial proteins to activate the immune system.

Liposomes are vesicles composed of a phospholipid bilayer membrane. Antigen can be packaged in its aqueous core, inside the lipid bilayer, or on the outside of the membrane. 1006-1008 A liposomal HIV-1 vaccine delivered to mice by the IN route resulted in strong IgG and IgA responses in serum and vaginal washes. 1009

VLPs are aggregates of viral proteins that may include a lipid component. ^{1010,1011} IN vaccination of VLPs with influenza antigens similar to those of the 1918 pandemic strain protected mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. ¹⁰¹²

Virosomes have lipid bilayer membranes with embedded viral proteins and resemble viruses except that they lack the genetic material needed to replicate. ^{1013,1014} Cusi and coworkers vaccinated mice by the IN route with a reconstituted influenza virosome assembled with plasmids expressing the carcinoembryonic antigen (CEA) gene. ¹⁰¹⁵ The intranasally vaccinated mice developed CEA-specific antibodies but were not protected from challenge with CEA-expressing mastocytoma cells. However, when the CEA virosomal vaccine was coadministered by the IN route with reconstituted influenza virosomes with plasmids expressing the CD40L gene as an adjuvant, the level of antibody increased and the mice were protected from tumorcell challenge.

ISCOMs are cage-like structures roughly 40 nm in size, composed of 12 subunits of saponin (such as Quil A) and cholesterol. ¹⁰¹⁶ Several antigens administered in ISCOM-based IN vaccines produced strong systemic and mucosal immune responses. ¹⁰¹⁶⁻¹⁰²² For example, IN administration of ISCOMs with a tuberculosis recombinant protein strongly boosted prior BCG immunity and reduced bacterial burden in the lungs compared with nonboosted mice.

Respiratory delivery can also be enhanced by packaging antigens and adjuvants into microparticles or nanoparticles composed of polymers of biodegradable materials such as polylactide (PLA) and polylactide co-glycolide (PLGA), or into biopolymers such as chitin or chitosan. 1023-1032 Microparticles can be designed to slowly release antigens to increase the duration of antigen presentation. Carcaboso and colleagues reported that mice immunized by the IN route with a synthetic malaria vaccine encapsulated into 1.5-µm-diameter microparticles of PLGA had significantly higher antigen-specific serum IgG titers than control mice given the vaccine by the SC route with alum adjuvant. 1030 Pulmonary immunization with chitosan microparticles containing diphtheria toxoid resulted in neutralizing antibody titers comparable to or significantly higher than those achieved after SC administration of alum-adsorbed diphtheria toxoid.1032

Dry-powder formulations for respiratory delivery

Vaccines based on any of these delivery systems could potentially be formulated into powders for direct delivery in the dry state, a technique for which there is growing interest. For example, a PubMed search in October 2011 using the terms vaccine and powder yielded 33 articles published since 2000, related to respiratory delivery of powder vaccines, compared with only two prior to that year.

A number of obstacles must be overcome to produce successful respirable vaccines as dry particles of the sizes suitable for delivery to the respiratory tract. 1033-1035 First, formulating powders requires significant and extensive changes in manufacturing methods, even from those used for current lyophilized vaccines. Second, many potential dry formulation ingredients are extremely hygroscopic and gum up when exposed to humidity. Engineering is needed to maintain their structure and dispersability for delivery in the dry state. Third, once the powders are deposited in the respiratory tract, they must be sufficiently hygroscopic to dissolve and release the vaccine for uptake.

Another challenge is that most dry-powder delivery devices require active inhalation by the patient and thus may be impractical for small children. Two potential solutions for this age group, however, are direct nasal delivery, as well as dispensing the powder into a reservoir (see, eg, Figure 61-8A,B) from which the child can breathe normally. 803

On the other hand, there are several significant potential advantages to dry-powder vaccination. Doses can be filled into inexpensive, single-use presentations and delivered without on-site aqueous reconstitution, thus avoiding the occasional human error that results in using the wrong or contaminated diluent. The cost of shipping and storing such diluents would be avoided. Secondary packaging that seals the dose container in an impermeable overwrap, such as metal foil, could maintain low humidity, which may prolong potency and increase shelf life. Recent progress for improving the thermostability of liquid vaccines, and even more so for dry ones, 1036 points to a future in which many vaccines may not require a cold chain. 364

Measles vaccine powders

Measles vaccination has been a path-finding application for respiratory delivery of dry powder. Early formulations were finely milled and retained adequate potency, but immune responses were poor when delivered to the respiratory tract of macaques. 1033,1035 An active developer is Aktiv-Dry,799 which is working with partners including the Serum Institute of India (SII), the CDC, and the University of Colorado. In 2005, its MVDP project was awarded over \$19 million in a Grand Challenges in Global Health grant from the Bill and Melinda Gates Foundation to refine a formulation, establish dry-powder measles vaccine production capacity at SII, and complete animal and phase 1 clinical testing. 1037-1039

Aktiv-Dry uses a novel spray-drying system to manufacture inhalable MVDP, starting from a bulk liquid of SII-provided, live attenuated antigen containing myo-inositol as a stabilizer. Virus plaque assays demonstrated potency losses in the drying process of 0% to 22%, which is comparable to losses seen with lyophilization. ¹⁰⁴⁰ As reported earlier, the end product demonstrated immunogenicity in cotton rats and rhesus macaques. ^{802,803} Its licensure-grade toxicology study found no test-article-related effects, or delayed onset of toxicity after inhalation by Sprague–Dawley rats. ¹⁰⁴¹ A second toxicology study after administration by mask using either BD Solovent or PuffHaler to measlesseronegative rhesus macaques produced no effects in mortality, clinical observations, respiratory function, clinical pathology, or histopathology. ¹⁰⁴²

SII manufactured MVDP, and its clinical trial application was approved by the Drug Controller General of India to conduct a phase 1 safety trial in adults, adolescents, and infants using the PuffHaler or BD Solovent devices. The trial began in May of 2012.

Å separate project, reported by Ohtake and coworkers, found that a dry-powder measles vaccine, made by mild spray-drying and with unique stabilizers, was stable for up to 8 weeks at 37° C. 1036

Influenza vaccine powders

Dry-powder vaccines for influenza have been formulated and tested by several groups. A whole, inactivated virus product delivered by the IN route in rats elicited high titers of nasal anti-influenza IgA, as well as serum antibody titers equivalent to those obtained with injected vaccine. 804 No loss of potency was found when it was stored at 25° C and 25% relative humidity for up to 12 weeks, and at 40° C and 75% relative humidity for 2 weeks.

Another formulation produced by spray-freeze drying, with subunit viral antigen and inulin stabilizer, induced, upon pulmonary delivery, humoral (IgG), cell-mediated (IL-4, interferon gamma), and mucosal (IgA, IgG) immune responses in BALB/c mice. ¹⁰⁴³ The pulmonary route for a spray-freeze dried, whole inactivated virus vaccine stabilized with inulin provided protection similar to that provided by IM injection of mice exposed to a lethal dose of live virus. ¹⁰⁴⁴

Powder formulations for other vaccines

Other human-disease targets for dry-powder delivery studies include tuberculosis, hepatitis B, norovirus gastroenteritis, anthrax, and plague. A spray-dried formulation of adenovirus-vectored tuberculosis antigen with mannitol-based stabilizers was shown to have characteristics suitable for pulmonary delivery in terms of thermodynamics, water absorption, particle size distribution and morphology, and virus survival. 1045 Nanoparticle-aggregate formulations containing recombinant hepatitis B surface antigen administered to the lungs of guinea pigs produced high IgG and IgA titers. 1046 Nasal vaccination with Norwalk-virus VLPs with an inert in situ gelling polysaccharide induced systemic and mucosal antibody titers equal to or greater than those achieved by VLPs plus adjuvant in a liquid formulation delivered by the IN route. 1047 Dry-powder vaccines against bioweapons threats have been studied. For example, anthrax vaccine by the IN route provided complete protection against inhalational challenge with roughly 90 times the median lethal dose [LD₅₀], in rabbits, while providing better stability than liquid formulations. 101,1048,1049 A stable powder vaccine against Yersinia pestis administered by the IN route to mice required but an extra dose of vaccine to achieve protection similar to that of IM delivery against plague after lethal challenge. 1050

Adjuvants for respiratory delivery

Nonreplicating antigens delivered via the respiratory tract are typically poorly immunogenic and may require adjuvants to stimulate an appropriate immune response. Adjuvants studied for this purpose include bacterial toxins and their derivatives, other bacterial components, bacterial DNA motifs, cytokines and chemokines, plant derivatives, and nanoemulsions. 1051-1056

Toxins

Cholera toxin (CT) and E. coli heat-labile toxin are potent adjuvants, but in native forms they may be too toxic for some uses in humans (see "Bacterial exotoxins", earlier). 1053,1057-1062 LT adjuvant in a commercial Swiss influenza vaccine for IN delivery was suspected as the reason for a many-fold increase in the risk of Bell's palsy after vaccination, leading to market withdrawal of the vaccine in 2001.46,47 Although the pathogenesis of the vaccine's effect on the seventh cranial nerve is uncertain, branches of the nerve do run near the nose. Other adverse neurologic effects of CT and LT have been hypothesized, based on their accumulation in the olfactory bulbs of BALB/c mice after nasal administration, sometimes with concurrent inflammation. 1063 As a result, recent adjuvant research has focused on subunits, detoxified versions, and other variants of CT and LT.1064-1081 Several of these, such as CTA1-DD, do not accumulate in the olfactory bulb of BALB/c mice. 1082

Structural bacterial components

Other bacterial products that induce potent activation of the innate immune system include lipopolysaccharide and its derivative, monophosphoryl lipid A, as well as outer membrane proteins, flagellins, lipopeptides, filamentous hemagglutinins, and proteosomes.815,1083-1093 The last are outer membrane proteins of meningococci, which self-assemble into hydrophobic, proteinaceous nanoparticles. 1094 An intranasally delivered, proteosome-based, inactivated influenza vaccine produced serum and mucosal antibodies in human subjects. 1084 N. meningitidis B proteoliposome-derived cochleate was demonstrated to be a potent mucosal adjuvant. 1095 Three doses of tetanus toxoid vaccine with this adjuvant administered by the IN route to mice promoted IgG serum titers and IgA titers in saliva and vaginal washes that were significantly higher than to tetanus toxoid alone.

Nucleotide stimulators of innate immunity

Oligodeoxynucleotides of cytosine and guanine with phosphodiester backbone (CpG ODNs) mimic motifs found in bacterial DNA. They are potent adjuvants, as the innate immune system recognizes these as pathogen-associated molecular patterns. 1096-1100 Abe and colleagues found that a nontypeable H. influenzae (NTHi) vaccine, delivered by the IN route with CPG ODNs, produced mucosal IgA and serum IgG responses similar to those produced by vaccine delivered with CT. Enhanced clearance of NTHi from the nasopharynx after challenge was shown equally in both groups. 1100 The inclusion of CpG ODNs with four HIV peptide antigens in microparticles delivered by the IN route to mice significantly enhanced peptide-specific IgG and IgA peak titers and prolonged the duration of these antibodies, and it increased the sIgA response in mucosal washes. 1101 However, in another study, daily injections of high-dosage (60 μ g) CpG resulted in lymphoid follicle destruction and immunosuppression with liver necrosis after 20 days. 1102 Therefore, the potential adverse effects of CpG ODNs should be studied.

Protein signalers

Because many adjuvants induce the activation of cytokines and chemokines, investigators have looked at these cellular signaling molecules as adjuvants themselves that might reduce adjuvant toxicity. 1103-1110 Cytokines have been added directly to vaccine, or encoded for expression by a live vector or DNA vaccines. 1108 Bracci and colleagues found that, in mice, a single IN dose of an inactivated influenza vaccine provided full protection against virus challenge when the cytokine interferon type I was included as an adjuvant. 1109 Without it, the same dosage was only partially protective (40%). In mice, IN administration of pneumococcal surface protein A or tetanus toxoid, combined with the cytokine IL-1β, induced protective immunity equivalent to that induced by parenteral delivery.1110

Natural polymers

Chitin is a natural polysaccharide found in crustaceans. Its partial deacetylation yields chitosan, which is widely used in food products, as an excipient in drugs, and as a nutritional supplement. 1111 Chitin and chitosan have mucoadhesive properties and stimulate the innate immune system.1112 In humans, the addition of chitosan to a detoxified diphtheria toxin based on CRM-197 significantly increased toxin-neutralizing antibody levels upon IN delivery. 1113 The saponins of the Quillaja saponaria tree are potent adjuvants with high toxicity. Quil A, QS-21, and Iscoprep 703 are Q. saponaria derivatives with less toxicity. 1054 As an adjuvant for an IN HIV-1 DNA vaccine studied in mice, QS-21 consistently increased antigen-specific serum IgG and mucosal IgA compared with vaccine without adjuvant. 1114 Quil A and Iscoprep 703 are commonly used as components of immunostimulating complexes.

Combining adjuvants for respiratory vaccination may synergistically enhance immune protection. For example, IN delivery to mice of an influenza recombinant hemagglutinin (rHA) antigen, along with a combination of proteosomes and lipopolysaccharide adjuvants, enhanced serum IgG and mucosal IgA antibodies up to 250-fold compared with vaccine alone. 1088 Also, IN delivery of an influenza vaccine with a combined CTA1-DD/ISCOM adjuvant vector was superior to other vaccine formulations using the ISCOM or CTA1-DD adjuvants alone.1115

Nanoscale mixtures

Nanoemulsions are another class of adjuvants studied for respiratory vaccination. A soybean oil-in-water nanoemulsion was mixed with either US-licensed Fluzone, 97 or Fluvirin 443 inactivated, influenza vaccine (usually injected by the IM route), and delivered by the IN route to naïve ferrets. 1056 Resulting seroconversion rates were 67% to 100% against each of the three viral strains present in the vaccine. There was also protection against homologous viral challenge and significant cross-immunity to five other H3N2 influenza virus strains not present in the vaccine.

Respiratory vaccination in veterinary practice

The respiratory route of vaccination is common in veterinary medicine. 1116 Aerosol vaccines for the IN route or by pulmonary inhalation are commercially available for cows (bovine herpes virus 1, parainfluenza virus 3), pigs (Salmonella), horses (influenza, Streptococcus equi), dogs (Bordetella bronchiseptica), cats (feline calcivirus, feline herpesvirus 1), and chickens (infectious bronchitis virus, infectious laryngotracheitis virus, Newcastle disease virus). Almost all of the respiratory veterinary vaccines have live attenuated pathogens. In the United States, more than 8 billion chickens are vaccinated yearly using live attenuated vaccines delivered as aerosols or spray. 1117

Respiratory vaccines for bioterror agents and pandemic threats

Many biological agents for potential bioterrorism or biowarfare cause life-threatening respiratory infections and would probably be disseminated as aerosols. Thus, vaccine-induced mucosal immunity may be advantageous. Compared with the parenteral injection, respiratory vaccination increased survival after aerosol exposures of deadly agents in animal studies. 1048,1049 For example, a microsphere-based liquid anthrax vaccine delivered by the IN route to mice completely protected against aerosol challenge with anthrax spores. 1118 Two doses of human parainfluenza-virus-vectored Ebola vaccine were highly immunogenic in macaques and protected all animals against lethal Ebola virus challenge. 1119 A powdered formulation of anthrax vaccine with CpG ODNs administered intranasally to rabbits also provided full protection. 101 Other bioterror agents for which respiratory vaccines have shown increased protection against aerosol challenge include Francisella tularensis (tularemia), staphylococcal enterotoxin B, Burkholderia mallei (glanders) and Y. pestis (plague). 1050, 1120-1125

The threatened pandemic of severe acute respiratory syndrome (SARS) in 2002-03, and the actual one of H1N1 influenza in 2009-10, illustrate the critical need for prompt development of new vaccines and their rapid delivery in all countries potentially affected. In responding to future threats when new vaccines may be required, respiratory delivery may be useful for the various reasons already described. Simple devices, such as single-use dry-powder inhalers, could be distributed by mail and self-administered for mass vaccination if congregating crowds for conventional campaigns were deemed unwise.

IN delivery of Salmonella-vectored vaccine against the SARS coronavirus resulted in higher production of specific IgG and IgA than orogastric, intraperitoneal, or intravenous administration, and it provided high levels of specific cytotoxic T lymphocytes in BALB/c mice. 1126 Two IN doses of live attenuated H5N1 influenza A vaccine fully protected mice and ferrets against pulmonary replication of homologous and heterologous strains of wild-type H5N1.1127 Such cross-protection against diverse strains would be desirable for pandemic vaccine because of potential rapid changes in influenza surface antigens. For example, IN administration of inactivated, whole-virus H5N1 vaccine with adjuvant elicited immune responses with both sIgA in nasal, lung, and vaginal lavage, and IgG in serum, showing protective immunity against lethal H5N1 challenge and cross-clade protection. 1128 Also, aerosolized LAIV provided heterologous protection against pandemic H1N1 virus challenge in ferrets.807

Conclusion

Cutaneous, jet-injected, and respiratory methods for vaccine delivery overcome the dangers and often the hidden costs of traditional needle and syringe. Some long-standing, many novel, these techniques may offer other advantages in terms of dosage sparing, immune response, economics, thermostability, patient and user preference, and expanded venues for use.

Many promising techniques described in this chapter, however, face daunting obstacles to bridge the gap between successful proofs of principle in animal models by academic laboratories, and the expensive and complicated series of clinical trials (particularly for the many target diseases lacking convenient laboratory assays that predict protection) and related studies and regulatory steps to achieve licensure.³⁰ Indeed, the financing of all these stages requires investors to envision methods for their commercial-scale manufacturing and to predict demand in a rather monopsonistic market.

Finally, at the downstream outlet of the vaccine R&D pipeline, public health and immunization program policymakers, end-user purchasers, and (nowadays) independent philanthropic entities must be convinced by their own economic analyses and other considerations to pay for these fruits of immunization science. Perhaps some of the new technologies described and illustrated herein will help fulfill the widely admired goal that "all people deserve the chance to live healthy and productive lives". 1129

Disclosure

Coauthor M. J. P. is a coinventor with corresponding financial interests in the AeroVax (AerovectRx, Inc., 808 Creare, Inc. 805) and dry-powder inhaler (CDC, Creare 805) devices illustrated in Figures 61-7E,F and 61-8F, respectively.

Acknowledgments

We are grateful in this and the prior edition of this chapter²² to D. A. Henderson (University of Pittsburgh) for lending the vaccinostyle and rotary lancet (Figure 61-2A,B); to Robert H. Thrun (Anchor Products Company) for the surgical needle (Figure 61-2C); and to the following organizations and individuals for photographs, pre-publication manuscripts, reference material, fact-checking, and other assistance: 3M Corporation (Diane M. Kwiatkowski, Leonard Y. Chu), Altea Therapeutics (Alan Smith, Frank Tagliaferri), Antares Pharma (Anne E. Olinger, Peter Sadowski), Becton, Dickinson Co. (Noel Harvey, John Mikszta, Kenneth Powell, Vince Sullivan), Bioject Medical Technologies (Richard Stout, Breanna Cox), CDC Photographic Services (James Gathany, Greg Knobloch), Creare (James Barry, Darin Knaus), D'Antonio Consultants International (Nicholas Sr. Nicholas Jr. Ronald, Joseph, and Linda D'Antonio, and Rick Colvin), Georgia Institute of Technology (Mark Prausnitz), Injex-Equidyne (Randy Willis), Instituto Nacional de Salud Pública, Mexico (José Luis Valdespino), Intercell AG (Andi Bruckner, Gregory Glenn, Nina Waibel), Mada Medical (Robert Sorbello), Mercer University (Ajay Banga), Nanopass (Yotam Levin), National Medical Products (Rekha Patel), OptiNose (Per Gisle Djupesland), PATH (Courtney Jarrahian, Laura Saganic, Darin Zehrung), Pfizer (Peter Loudon, James Merson), PharmaJet (Chris Cappello, Heather Potters, Michael Royals), SID Technologies (Israel Tsals), University of Queensland (Mark A. F. Kendall), West Pharmaceuticals (Chris Evans, Zach Marks, Graham Reynolds, Hillit Mannor Shachar), and Zosano Pharma (Peter Daddona).

Access the complete reference list online at http://www.expertconsult.com [and on succeeding pages]

- Hickling JK, Jones R. Intradermal delivery of vaccines: a review of the literature and the potential for development for use in low- and middle-income countries. In: Seattle: PATH; 2009. p. 1–94. www.path.org/publications/detail.php?i=1746
- Kis EE, Winter G, Myschik J. Devices for intradermal vaccination. Vaccine 2012;30:523–38. 27.
- Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 2008;26:3197–208. 36.
- Kendall MAF. Needle-free vaccine injection. Handb Exp Pharmacol 2010:197:193-219.
- Kim YC, Jarrahian C, Zehrung D, et al. Delivery systems for intradermal vaccination. Curr Top Microbiol Immunol 2012;351:77–112.

 Combadière B, Mahé B. Particle-based vaccines for transcutaneous 43.
- vaccination. Comp Immunol Microbiol Infect Dis 2008;31:293-315.
- Teunissen MBM, Haniffa M, Collin MP. Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. Curr Top Microbiol Immunol 2012;351:25–76. Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the
- challenge. Nat Rev Immunol 2006;6:148–58. Michalek SM, O'Hagen DT, Childers NK, et al. Antigen delivery systems, I:
- non-living microparticles, liposomes, and immune stimulating complexes (ISCOMS). In: Mestecky J, Bienenstock J, Lamm ME, et al., editors. Mucosal Immunology. Burlington, MA: Elsevier, 2005. p. 987–1008.
- 1055. Holmgren J, Czerkinsky C, Eriksson K, et al. Mucosal immunization and adjuvants: a brief overview of recent advances and challenges. Vaccine 2003;21(Suppl. 2):S89–95.

References

- 1. Fenner F., Henderson D.A., Arita I.: Multiple chapters: Development of the global smallpox eradication programme, 1958–1966; Smallpox vaccine and vaccination in the intensified smallpox eradication programme; South America; Indonesia; and Western and Central Africa. In: Fenner F., Henderson D.A., Arita I., ed. Smallpox and Its Eradication, Geneva: World Health Organization; 1988.[accessed 03-06-12] http://whqlibdoc.who.int/smallpox/9241561106.pdf
- 2. Hopkins D.R.: The Greatest Killer: Smallpox in History, Chicago, IL, University of Chicago Press, 2002.
- 3. Feldmann H.: Die Geschichte der Injektionen. Laryngorhinootologie 2000; 79:239-246.
- 4. Blaessinger E.: Un prestigieux centenaire polytechnicien Charles-Gabriel Pravaz (1791–1853). Presse Med 1953; 61:1182-1183.
- 5. Martin M-E: Le centenaire de Pravaz. *Maroc Med* 1953; 32:736-737.
- 6. Rynd F.: Description of an instrument for the subcutaneous introduction of fluids in affections of the nerves. *Dublin Quart J Med Sci* 1861; 32:13.
- 7. Wood A.: New method of treating neuralgia by the direct application of opiates to the painful points. *Edin Med Surg J* 1855; 82:265-281
- 8. Pasteur L.: Compte rendu sommaire des expériences faites à Pouilly-le-Fort, près Melun, sur la vaccination charbonneuse (avec la collaboration de MM. Chamberland et Roux). *C R Acad Sci (Paris)* 1881; 92:1378-1383.
- 9. Mendelsohn J.A.: "Like all that lives": biology, medicine and bacteria in the age of Pasteur and Koch. *Hist Philos Life Sci* 2002; 24:3-36.
- 10. Simonsen L., Kane A., Lloyd J., et al: Unsafe injections in the developing world and transmission of bloodborne pathogens: a review. *Bull World Health Organ* 1999; 77:789-800.
- 11. Popp W., Rasslan O., Unahalekhaka A., et al: What is the use? an international look at reuse of single-use medical devices. *Int J Hyg Environ Health* 2010; 213:302-307.
- 12. Hagan H., Des Jarlais D.C.: HIV and HCV infection among injecting drug users. Mt Sinai J Med 2000; 67:423-428.
- 13. Drucker E., Alcabes P.G., Marx P.A.: The injection century: massive unsterile injections and the emergence of human pathogens. *Lancet* 2001; 358:1989-1992.
- 14. Prüss-Üstün A., Rapiti E., Hutin Y.: *Sharps injuries: global burden of disease from sharps injuries to health-care workers*, Geneva, World Health Organization, 2003. (WHO Environmental Burden of Disease Series, no. 3.)[accessed 03-06-12] www.who.int/quantifying_ehimpacts/publications/9241562463/en/index.html
- 15. Panlilio A.L., Orelien J.G., Srivastava P.U., et al: Estimate of the annual number of percutaneous injuries among hospital-based healthcare workers in the United States, 1997–1998. *Infect Control Hosp Epidemiol* 2004; 25:556-562.
- 16. Lieu T.A., Black S.B., Ray G.T., et al: The hidden costs of infant vaccination. Vaccine 2000; 19:33-41.
- 17. Jacobson R.M., Swan A., Adegbenro A., et al: Making vaccines more acceptable: methods to prevent and minimize pain and other common adverse events associated with vaccines. *Vaccine* 2001; 19:2418-2427.
- 18. In: Prüss A., Giroult E., Rushbrook P., ed. *Safe management of wastes from healthcare activities*, Geneva: World Health Organization; 1999.[accessed 22.04.06]. www.who.int/water-sanitation-health/medicalwaste/wastemanag/en
- Grabenstein J.D., Nevin R.L.: Mass immunization programs: principles and standards. Curr Top Microbiol Immunol 2006; 304:31-51.
- Glenn G., Kenney R.: Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol 2006; 304:247-268. http://dx.doi.org/10.1007/3-540-36583-4 14
- 21. Foege W.H., Eddins D.L.: Mass vaccination programs in developing countries. *Prog Med Virol* 1973; 15:205-243.
- 22. Weniger B.G., Papania M.J.: *Alternative vaccine delivery methods*. In: Plotkin S.A., Orenstein W.A., Offit P.A., ed. *Vaccines*, 5th ed. Philadelphia: Elsevier/Saunders; 2008:1357-1392 [ISBN 978-1-4160-3611-1]. (See this prior edition for older references and photographs not published here.)
- 23. Hickling J.K., Jones K.R., Friede M., et al: Intradermal delivery of vaccines: potential benefits and current challenges. *Bull World Health Organ* 2011; 89:221-226.
- 24. Hickling J.K., Jones R.: Intradermal delivery of vaccines: a review of the literature and the potential for development for use in low-and middle-income countries, Seattle: PATH; 2009:1-94.www.path.org/publications/detail.php?i=1746
- 25. Fondation Mérieux : Intradermal immunization: an alternative route for vaccine administration, 7–9 April 2008; meeting report. *Vaccine* 2008; 26(Suppl. 9):S1-S5.
- 26. Dubin C.H.: Transdermal delivery: making a comeback!. Drug Deliv Technol 2010; 10:24-28.[accessed 12.12.11]
- 27. Kis E.E., Winter G., Myschik J.: Devices for intradermal vaccination. Vaccine 2012; 30:523-538.
- 28. Levine M.M.: Can needle-free administration of vaccines become the norm in global immunization?. *Nat Med* 2003; 9:99-103.
- 29. Cross S.E., Roberts M.S.: Physical enhancement of transdermal drug application: is delivery technology keeping up with pharmaceutical development?. *Curr Drug Deliv* 2004; 1:81-92.
- 30. O'Hagan D.T., Rappuoli R.: Novel approaches to vaccine delivery. *Pharm Res* 2004; 21:1519-1530.
- 31. Prausnitz M.R., Mitragotri S., Langer R.: Current status and future potential of transdermal drug delivery. *Nat Rev* 2004; 3:115-124.
- 32. Prausnitz M.R., Langer R.: Transdermal drug delivery. *Nat Biotechnol* 2008; 26:1261-1268.
- 33. Mitragotri S.: Immunization without needles. *Nat Rev Immunol* 2005; 5:905-916.
- 34. Giudice E.L., Campbell J.D.: Needle-free vaccine delivery. Adv Drug Deliv Rev 2006; 58:68-89.

- 35. Brown M.B., Traynor M.J., Martin G.P., et al: *Transdermal drug delivery systems: skin perturbation devices*. In: Jain K.K., ed. *Drug Delivery Systems*, Totowa, NJ: Humana Press; 2008:119-139.
- 36. Lambert P.H., Laurent P.E.: Intradermal vaccine delivery: will new delivery systems transform vaccine administration?. *Vaccine* 2008; 26:3197-3208.
- 37. Nicolas J.F., Guy B.: Intradermal, epidermal and transcutaneous vaccination: from immunology to clinical practice. *Expert Rev Vaccines* 2008; 7:1201-1214.
- 38. Simon J.K., Levine M.M., Weniger B.G., et al: *Mucosal immunization and needle-free injection devices*. In: Levine M.M., Kaper J.B., Rappuoli R., et al ed. *New Generation Vaccines*, 4th ed. New York: Informa Healthcare; 2009.
- 39. Bal S.M., Ding Z., van Riet E., et al: Advances in transcutaneous vaccine delivery: do all ways lead to Rome?. *J Control Release* 2010: 148:266-282.
- 40. Mikszta J.A., Laurent P.E.: Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. *Expert Rev Vaccines* 2008; 7:1329-1339.
- 41. Prausnitz M.R., Mikszta J.A., Cormier M., et al: Microneedle-based vaccines. Curr Top Microbiol Immunol 2009; 333:369-393.
- 42. Kendall M.A.F.: Needle-free vaccine injection. *Handb Exp Pharmacol* 2010; 197:193-219.
- 43. Kim Y.C., Jarrahian C., Zehrung D., et al: Delivery systems for intradermal vaccination. *Curr Top Microbiol Immunol* 2012; 351:77-112
- Combadière B., Mahé B.: Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 2008; 31:293-315
- 45. Bines J.E.: Rotavirus vaccines and intussusception risk. Curr Opin Gastroenterol 2005; 21:20-25.
- 46. Mutsch M., Zhou W., Rhodes P., et al: Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N Engl J Med 2004; 350:896-903.
- 47. Couch R.B.: Nasal vaccination, Escherichia coli enterotoxin, and Bell's palsy. N Engl J Med 2004; 350:860-861.
- 48. Deeks S.L., Clark M., Scheifele D.W., et al: Serious adverse events associated with bacille Calmette-Guérin vaccine in Canada. *Pediatr Infect Dis J* 2005; 24:538-541.
- 49. Nalca A., Zumbrun E.E.: ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. *Drug Des Devel Ther* 2010; 4:71-79.
- 50. Artenstein A.W.: New generation smallpox vaccines: a review of preclinical and clinical data. Rev Med Virol 2008; 18:217-231.
- 51. Cheng X., Koch P.J.: In vivo function of desmosomes. J Dermatol 2004; 31:171-187.
- 52. Huber O.: Structure and function of desmosomal proteins and their role in development and disease. *Cell Mol Life Sci* 2003; 60:1872-1890.
- 53. Ploin D., Schwarzenbach F., Dubray C., et al: Echographic measurement of skin thickness in sites suitable for intradermal vaccine injection in infants and children. *Vaccine* 2011; 29:8438-8442.
- 54. Hadgraft J.: Skin, the final frontier. Int J Pharm 2001; 224:1-18.
- 55. Steinhoff M., Brzoska T., Luger T.A.: Keratinocytes in epidermal immune responses. *Curr Opin Allergy Clin Immunol* 2001; 1:469-476.
- 56. Banchereau J., Steinman R.M.: Dendritic cells and the control of immunity. *Nature* 1998; 392:245-252.
- 57. Romani N., Holzmann S., Tripp C.H., et al: Langerhans cells: dendritic cells of the epidermis. APMIS 2003; 111:725-740.
- 58. Sallusto F.: Origin and migratory properties of dendritic cells in the skin. Curr Opin Allergy Clin Immunol 2001; 1:441-448.
- 59. Goldsby R.A., Kindt T.J., Kuby J., et al: *Immunology*, 5th ed. New York: WH Freeman; 2003:603.
- 60. Teunissen M.B.M., Haniffa M., Collin M.P.: Insight into the immunobiology of human skin and functional specialization of skin dendritic cell subsets to innovate intradermal vaccination design. *Curr Top Microbiol Immunol* 2012; 351:25-76.
- 61. Yu R.C., Ambrams D.C., Alaibac M., et al: Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy. *Br J Dermatol* 1994; 131:843-848.
- 62. Leake J.P.: Questions and answers on smallpox and vaccination. Public Health Rep. 1927; 42:221-238.
- 63. Kravitz H.: A simplified technique for vaccination against smallpox. *Pediatrics* 1961; 27:219-226.
- 64. Mérieux C., Mérieux A., Triau R.: Tuberculination, vaccination B.C.G. ou antivariolique a l'aide d'une bague à pointes. *Arch Mal Prof* 1966; 27:444-449.
- 65. Rubin B.A.: Inventor, American Home Products Corporation, assignee. Pronged Vaccinating and Testing Needle, US Patent US3194237, Jul 13, 1965.
- 66. Foege W.H.: House on Fire: The Fight to Eradicate Smallpox, Berkeley, University of California Press, 2011.
- 67. Lugosi L.: Theoretical and methodological aspects of BCG vaccine from the discovery of Calmette and Guérin to molecular biology: a review. *Tuber Lung Dis* 1992; 73:252-261.
- 68. Birkhaug K.: An experimental and clinical investigation of a percutaneous (Rosenthal) method of BCG vaccination. *Nord Med* 1941; 10:1224-1231.
- 69. Briggs I.L., Smith C.: BCG vaccination by the multiple puncture method in Northern Rhodesia. *Tubercle* 1957; 38:107-111.
- 70. Griffith A.H.: BCG vaccination by multiple puncture. *Lancet* 1959; 273:1170-1172.
- 71. Gheorgiu M.: The present and future role of BCG vaccine in tuberculosis control. *Biologicals* 1990; 18:135-141.

- 72. Kamigawara N.: Retrospective assessment of the effectiveness of BCG vaccination by multiple puncture method (Kuchiki's needle) in childhood tuberculosis. *Kekkaku* 1989; 64:305-311.
- 73. Japan BCG Laboratory. Bunkyo-ku, Tokyo, 112–0006 Japan. www.bcg.gr.jp/english; [accessed 13.01.12].
- 74. ten Dam H.G., Fillastre C., Conge G., et al: The use of jet-injectors in BCG vaccination. Bull World Health Organ 1970; 43:707-720.
- 75. Darmanger A.M., Nekzad S.M., Kuis M., et al: BCG vaccination by bifurcated needle in a pilot BCG vaccination programme. *Bull World Health Organ* 1977; 55:49-61.
- 76. Mendel F.: Die von Pirquet'sche Hautreaktion und die intravenöse Tuberkulinbehandlung. Med Klin (München) 1908; 4:402-404.
- 77. Mantoux C.: Intradermo-réaction de la tuberculine. C R Acad Sci (Paris) 1908; 147:355-357.
- 78. Centers for Disease Control and Prevention. Mantoux tuberculosis skin test facilitator guide. Atlanta: Department of Health and Human Services, Division of Tuberculosis Elimination. www.cdc.gov/tb/education/Mantoux/part1.htm; [accessed 02.01.12].
- 79. Ismach A.: Intradermal nozzle for jet injection devices (US Patent 3,140,713), assigned to Secretary of the Army on behalf of United States of America, Washington, DC, US Patent Office, July 14, 1964. issued
- 80. Millar J.D., Roberto R.R., Wulff H., et al: Smallpox vaccination by intradermal jet injection: introduction, background and results of pilot studies. *Bull World Health Organ* 1969; 41:749-760.
- 81. Neff J.M., Millar J.D., Roberto R.R., et al: Smallpox vaccination by intradermal jet injection: evaluation in a well-vaccinated population. *Bull World Health Organ* 1969; 41:771-778.
- 82. PharmaJet Inc. (successor entity to Genesis Medical Technologies). Golden, CO. www.pharmajet.com
- 83. Bioject, Inc. Tualatin, OR. www.bioject.com
- 84. Becton, Dickinson and Co. Franklin Lakes, NJ. www.bd.com/technologies
- 84a. Beijing QS Medical Technology Co., Ltd., Beijing, China, www.qsjet.com
- 84b. Bio-Curve Beauty & Health Equipment Factory, Guangzhou, Guandong, China, www.bio-curve.com
- 84c. Sino Goldbuilder Med Tech (Beijing) Ltd., Haidianqu, Beijing, China, www.sino-gb.com
- 84d. Team Consulting Ltd., Cambridge, UK, www.team-consulting.com
- 84e. World Pharma. No more needles. World Pharmaceutical Frontiers, March 2012, www.worldpharmaceuticals.net/marketresources/018-sept10/WPF018 crossject.htm
- 85. Laurent P.E., Bonnet S., Alchas P., et al: Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. *Vaccine* 2007; 25:8833-8842.
- 86. Laurent A., Mistretta F., Bottigioli D., et al: Echographic measurement of skin thickness in adults by high-frequency ultrasound to assess the appropriate microneedle length for intradermal delivery of vaccines. *Vaccine* 2007; 25:6423-6430.
- 87. Sanofi Pasteur vaccines division, Groupe Sanofi-Aventis. Lyon, France. www.sanofipasteur.com
- 88. Belshe R.B., Newman F.K., Cannon J., et al: Serum antibody responses after intradermal vaccination against influenza. *N Engl J Med* 2004; 351:2286-2294.
- 89. Holland D., Booy R., De Looze F., et al: Superior immunogenicity in elderly adults of an intradermal influenza vaccine using a new microinjection system: a randomized controlled trial. *J Infect Dis* 2008; 198:650-658.
- 90. Arnou R., Icardi G., De Decker M., et al: Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study. *Vaccine* 2009; 27:7304-7312.
- 91. Van Damme P., Arnou R., Kafeja F., et al: Evaluation of non-inferiority of intradermal versus adjuvanted seasonal influenza vaccine using two serological techniques: a randomised comparative study. *BMC Infect Dis* 2010; 10:134.
- 92. Leroux-Roels I., Vets E., Freese R., et al: Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults. *Vaccine* 2008; 26:6614-6619.(Corrigendum: Vaccine 28:8033, 2010.)
- 93. Arnou R., Eavis P., Pardo J.R., et al: Immunogenicity, large scale safety and lot consistency of an intradermal influenza vaccine in adults aged 18–60 years: randomized, controlled, phase III trial. *Hum Vaccin* 2010; 6:346-354.
- 94. European Medicines Agency: Assessment report for Intanza. Intanza: common name: influenza vaccine (split virion, inactivated), 2009:1-63. Procedure no. EMEA/H/C/000957
- 95. Atmar R.L., Patel S.M., Keitel W.A.: Intanza: a new intradermal vaccine for seasonal influenza. *Expert Rev Vaccines* 2010; 9:1399-1409.
- 96. Beran J., Ambrozaitis A., Laiskonis A., et al: Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial. *BMC Med* 2009; 7:13.
- 97. Sanofi Pasteur: Prescribing information: Fluzone, Fluzone High-Dose, Fluzone Intradermal (Influenza Virus Vaccine), suspension for injection, 2011–2012 formula. 2011. Swiftwater, PA www.vaccineshoppe.com/image.cfm?doc_id=12427&image_type=product_pdf
- 98. Laurent P.E.: *Microneedle technology for intradermal vaccine delivery: preclinical and clinical development strategy. Skin Vaccination Summit 2011*, Washington, DC: Meetings Management Ltd; 12–14 October, 2011.
- 99. Laurent P.E., Bourhy H., Fantino M., et al: Safety and efficacy of novel dermal and epidermal microneedle delivery systems for rabies vaccination in healthy adults. *Vaccine* 2010; 28:5850-5856.
- 100. Harvey A.J., Kaestner S.A., Sutter D.E., et al: Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. *Pharm Res* 2011; 28:107.
- 101. Mikszta J.A., Sullivan V.J., Dean C., et al: Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. *J Infect Dis* 2005; 191:278-288.

- 102. Mikszta J.A., Dekker III J.P., Harvey N.G., et al: Microneedle-based intradermal delivery of the anthrax recombinant protective antigen vaccine. *Infect Immun* 2006; 74:6806-6810.
- 103. Morefield G.L., Tammariello R.F., Purcell B.K., et al: An alternative approach to combination vaccines: intradermal administration of isolated components for control of anthrax, botulism, plague and staphylococcal toxic shock. *J Immune Based Ther Vaccines* 2008; 6:5.
- 104. Alarcon J.B., Waterston Hartley A., et al: Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. *Clin Vaccine Immunol* 2007; 14:375-381.
- 105. Dean C.H., Alarcon J.B., Waterston A.M., et al: Cutaneous delivery of a live, attenuated chimeric flavivirus vaccine against Japanese encephalitis (ChimeriVax-JE) in non-human primates. *Hum Vaccin* 2005; 1:106-111.[Erratum: 1:179, 2005.]
- 106. PATH (once known as Program for Appropriate Technology in Health). Seattle, WA. <u>www.path.org</u>. (The MEDIVAX project was in partnership with Vitajet, Inc., and was subsequently absorbed into Bioject, Inc).
- 107. Tsals I.: One hundred years after Dr. Mantoux: reliable and easy method for intradermal injection. 8th Annual Vaccines "All Things Considered" Conference; Washington, DC, Monrovia, CA: Global Technology Community; 8–9 November, 2010:.poster presentation
- 108. Shachar H.M.: Intradermal delivery: phase 1 results from novel intradermal adapter (oral presentation), Lyon, France, World Vaccine Congress, 10–13 October 2011.
- 109. Jarrahian C., Zehrung D., Saxon E., et al: Clinical performance and safety of the ID adapter, a prototype intradermal delivery technology for vaccines, drugs, and diagnostic tests. *Proced Vaccinol* 2012; 6:125-133.
- 110. SID Technologies LLC. Newtown, PA.
- 111. West Pharmaceutical Services, Inc. Lionville, PA. www.westpharma.com
- 112. PATH: Technology Solutions for Global Health: Intradermal adapter, February 2011. www.path.org/publications/files/TS update id adapt.pdf
- 113. Vaughan J.P., Lindqvist K., Brooke D., et al: Combined BCG and smallpox immunization: a preliminary report on a method using the W.H.O. bifurcated needle. *East Afr Med J* 1972; 49:207-212.
- 114. Vaughan J.P., Menu J.P., Lindquiest K.J., et al: A trial with a mixed BCG smallpox vaccine given intradermally. *J Trop Med Hyg* 1973; 76:262.
- 115. Francis T., McGill T.: The antibody response of human subjects vaccinated with the virus of human influenza. *J Exp Med* 1937; 65:251-259.
- 116. Halperin W., Weiss W.I., Altman R., et al: A comparison of the intradermal and subcutaneous routes of influenza vaccination with A/New Jersey/76 (swine flu) and A/Victoria/75: report of a study and review of the literature. *Am J Public Health* 1979; 69:1247-1251.
- 117. Herbert F.A., Larke R.P., Markstad E.L.: Comparison of responses to influenza A/New Jersey/76-A/Victoria/75 virus vaccine administered intradermally or subcutaneously to adults with chronic respiratory disease. *J Infect Dis* 1979; 140:234-238.
- 118. Bruyn H.B., Meiklejohn G., Brainerd H.D.: The use of influenza virus vaccine in children. Proceedings of the Western Society for Clinical Research, San Francisco, CA. *Am J Med* 1947; 4:622.
- 119. Van Gelder D., Greenspan F., Dufresne N.: Influenza vaccination: comparison of intracutaneous and subcutaneous methods. *Naval Med Bull* 1947; 47:197-206.
- 120. Weller T.H., Cheever F.S., Enders J.F.: Immunologic reactions following the intradermal inoculation of influenza A and B vaccine. *Proc Soc Exp Biol Med* 1948; 67:96-101.
- 121. Bruyn H., Meiklejohn G., Brainerd H.: Influenza vaccination: a comparison of antibody response obtained by various methods of administration. *J Immunol* 1949; 62:1-11.
- 122. Bruyn H., Meiklejohn G., Brainerd H.: Influenza vaccine: a study of serologic responses and incidence of reactions following subcutaneous and intradermal inoculation. *Am J Dis Child* 1949; 77:149-163.
- 123. Edwards H.K., Wellings F.M., Colwell F.O., et al: Immunization against influenza in industry_Ind Med Surg 1958; 27:638-640.
- 124. Hilleman M.R., Flatley F.J., Anderson S.A., et al: Antibody response in volunteers to Asian influenza vaccine. *JAMA* 1958; 166:1134-1140.
- 125. Kirkham L.J.: Asiatic influenza in a Midwestern town: with a comparison of intradermal and subcutaneous vaccination. *J Iowa State Med Soc* 1958; 48:593-598.
- 126. Sanger M.D.: Immunization after intradermal and subcutaneous injection of Asian influenza vaccine. Ann Allergy 1959; 17:173-178.
- 127. Stille W.T., Woolridge R.L., Gundelfinger B.F.: Antibody response to intracutaneous and subcutaneous influenza vaccination. *J Lab Clin Med* 1959; 53:751-754.
- 128. Beasley A.R., Sigel M.M., Schlaepfer G.G., et al: Antibody responses of children to Asian influenza vaccine. *J Fla Med Assoc* 1960; 46:1367-1371.
- 129. Saslaw S., Carlisle H.N.: Effect of dosage on antibody response to polyvalent influenza virus vaccine in an aged population. *Am J Med Sci* 1964; 248:273-284.
- 130. Clark M.L., Reinhardt H., Miller M.C., et al: Polyvalent influenza vaccine: comparison of jet injection with intradermal and subcutaneous syringe methods of administration. *J Lab Clin Med* 1965; 66:34-41.
- 131. Tauraso N.M., Gleckman R., Pedreira F.A., et al: Effect of dosage and route of inoculation upon antigenicity of inactivated influenza virus vaccine (Hong Kong strain) in man. *Bull World Health Organ* 1969; 41:507-516.

- 132. Marks M.I., Eller J.J.: Intradermal influenza immunization. Experience with Hong Kong vaccine. *Am Rev Respir Dis* 1971; 103:579-581
- 133. Brown H., Kasel J.A., Freeman D.M., et al: The immunizing effect of influenza A/New Jersey/76 (Hsw1N1) vaccine administered intradermally and intramuscularly to adults. *J Infect Dis* 1977; 136(Suppl. 2):S466-S471.
- 134. Spiegel A., Lemardeley P., Germanetto P., et al: *Mini-Imojet et vaccination anti-grippale dans les armées françaises: tolérance immédiate et faisabilité*. In: Parent du Châtelet I., Schlumberger M., da Silva A., Association pour l'Aide à la Médecine Préventive, ed. *Actes: 4ème Séminaire International sur les Vaccinations en Afrique-'Bâtir des Partenariats Durables pour les Vaccinations en Afrique', Yamoussoukro, Côte d'Ivoire, 13–16 March 1994, Lyon: Fondation Mérieux Collection; 1994:344-345.*
- 135. Boger W.P., Liu O.C.: Subcutaneous and intradermal vaccination with Asian influenza vaccine. JAMA 1957; 165:1687-1689.
- 136. Saslaw S., Carlisle H.N., Slutzker B.: Antibody response to polyvalent influenza virus vaccine administered intradermally or subcutaneously in an aged population. *Am J Med Sci* 1963; 245:387-398.
- 137. Phillips C.A., Forsyth B.R., Christmas W.A., et al: Purified influenza vaccine: clinical and serologic responses to varying doses and different routes of immunization. *J Infect Dis* 1970; 122:26-32.
- 138. Sigel M.M., Edwards H.K., Schlaepfer G.A., et al: Preliminary findings on vaccination against Asian influenza [letter]. *JAMA* 1957; 165:1860-1861.
- 139. Hutchinson P., Izumi T., Davidson W.: Influenza vaccines: intradermal administration. Can Dis Wkly Rep 1977; 3–28:110-111.
- 140. Davies J.W., Simon W.R.: Antibody response to influenza immunization by jet injection. Can J Public Health 1969; 60:104-108.
- 141. McCarroll J., Kilbourne E.D.: Immunization with Asian-strain influenza vaccine: equivalence of the subcutaneous and intradermal routes. *N Engl J Med* 1958; 259:618-621.
- 142. Klein M., Huang M.: The response of infants and children to Asian influenza vaccine administered by intradermal and subcutaneous routes. *J Pediatr* 1961; 58:312-314.
- 143. Kenney R.T., Frech S.A., Muenz L.R., et al: Dose sparing with intradermal injection of influenza vaccine. *N Engl J Med* 2004; 351:2295-2301.
- 144. Hinman A.R., Orenstein W.A., Santoli J.M., et al: Vaccine shortages: history, impact, and prospects for the future. *Annu Rev Public Health* 2006; 27:235-259.
- 145. La Montagne J.R., Fauci A.S.: Intradermal influenza vaccination-can less be more? N Engl J Med 2004; 351:2330-2332.
- 146. Van Kerckhoven V., Van Damme P.: Clinical studies assessing immunogenicity and safety of intradermally administrated influenza vaccines. *Expert Opin Drug Deliv* 2010; 7:1109-1125.
- 147. Young F., Marra F.: A systematic review of intradermal influenza vaccines. Vaccine 2011; 29:8788-8801.
- 148. Auewarakul P., Kositanont U., Sornsathapornkul P., et al: Antibody responses after dose-sparing intradermal influenza vaccination. *Vaccine* 2007; 25:659-663.
- 149. Belshe R.B., Newman F.K., Wilkins K., et al: Comparative immunogenicity of trivalent influenza vaccine administered by intradermal or intramuscular route in healthy adults. *Vaccine* 2007; 25:6755-6763.
- 150. Van Damme P., Oosterhuis-Kafeja F., Van de Wielen M., et al: Safety and efficacy of a novel microneedle device for dose-sparing intradermal influenza vaccination in healthy adults. *Vaccine* 2009; 27:454-459.
- 151. Chuaychoo B., Wongsurakiat P., Nana A., et al: The immunogenicity of intradermal influenza vaccination in COPD patients. *Vaccine* 2010; 28:4045-4051.
- 152. Chi R.C., Rock M.T., Neuzil K.M.: Immunogenicity and safety of intradermal influenza vaccination in healthy older adults. *Clin Infect Dis* 2010; 50:1331-1338.
- 153. Chiu S.S., Malik Peiris J.S., et al: Immunogenicity and safety of intradermal influenza immunization at a reduced dose in health children. *Pediatrics* 2007; 119:1076-1082.
- 154. Patel S.M., Atmar R.L., El Sahly H.M., et al: A phase I evaluation of inactivated influenza A/H5N1 vaccine administered by the intradermal or the intramuscular route. *Vaccine* 2010; 28:3025-3029.
- 155. Frenck R.W., Belshe R., Brady R.C., et al: Comparison of the immunogenicity and safety of a split-virion, inactivated, trivalent influenza vaccine (Fluzone) administered by intradermal and intramuscular route in healthy adults. *Vaccine* 2011; 29:5666-5674.
- 156. Salk J.E.: Recent studies on immunization against poliomyelitis. *Pediatrics* 1953; 12:471-482.
- 157. Salk J.E.: Studies in human subjects on active immunization against poliomyelitis, I: a preliminary report of experiments in progress. *JAMA* 1953; 151:1081-1098.
- 158. von Magnus H.: Poliovaccination 1955–1967 og fremtidige poliovaccinationer. Ugeskr Laeger 1967; 129:1759-1762.
- 159. von Magnus H.: Salk: control of polio with noninfectious vaccine. Cellular Biology: Nucleic Acids and Viruses, New York: New York Academy of Sciences; 1957:96-97.
- 160. Sigurdsson B., Gudnadóttir M., Pétursson G.: Response to poliomyelitis vaccination. *Lancet* 1958; 1:370-371.
- 161. Connolly J.H., Dick G.W., Corkin D.L.: Antibody response following intradermal or oral administration of formalinised poliomyelitis. *Lancet* 1958; 2:333-336.
- 162. Samuel B.U., Cherian T., Sridharan G., et al: Immune responses to intradermally injected inactivated poliovirus vaccine. *Lancet* 1991; 338:343-344.
- 163. Samuel B.U., Cherian M.D., Rajasingh J., et al: Immune response of infants to inactivated poliovirus vaccine injected intradermally. *Vaccine* 1992; 10:135.

- 164. Nirmal S., Cherian T., Samuel B.U., et al: Immune response of infants to fractional doses of intradermally administered inactivated poliovirus vaccine. *Vaccine* 1998; 16:928-931.
- 165. Hickling J., Jones R., Nundy N.: Improving the affordability of inactivated poliovirus vaccines (IPV) for use in low- and middle-income countries: an economic analysis of strategies to reduce the cost of routine IPV immunization, Seattle, WA, PATH, 20 April 2010. www.path.org/vaccineresources/details.php?i=1261
- Mohammed A.J., Al Awaidy S., Bawikar S., et al: Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med 2010; 362:2351-2359.
- 167. Resik S., Tejeda A., Lago P.M., et al: Randomized controlled clinical trial of fractional doses of inactivated poliovirus vaccine administered intradermally by needle-free device in Cuba. *J Infect Dis* 2010; 201:1344-1352.
- 168. Cadorna-Carlos J., Vidor E., Bonnet M.-C.: Randomized controlled study of fractional doses of inactivated poliovirus vaccine administered intradermally with a needle in the Philippines. *Int J Infect Dis* 2012; 16:e110-e116.
- 169. Estívariz C.F., Jafari H., Sutter R.W., et al: Immunogenicity of supplemental doses of poliovirus vaccine for children age 6–9 months in Moradabad, India: a community-based, randomised controlled trial. *Lancet Infect Dis* 2012; 12:128-135.
- 170. PATH. Health technologies. Vaccine technologies: Jet Injector. Jet Injector Project Overview. www.path.org/projects/jet_injector_overview.php; [accessed 12.12.11].
- 171. Durier C.: Mass yellow fever vaccination in French Africa south of the Sahara. In: Smithburn K.C., Durieux C., Koerber R., et al ed. Yellow Fever Vaccination, Geneva: World Health Organization; 1956:115-121.(Monograph ser. no. 30)
- 172. Chambon L., Tommasi U.B., Barme M., et al: *Vaccination associée BCG-fièvre jaune avec un injecteur du type Ped-O-Jet*. Rapport Final de la Xème Conférence Technique de l'OCCGE, vol. I. Bobo-Dioulasso: Upper Volta; 20–24 April, 1970:282-288.Organisation de Coopération et de Coordination pour la Lutte Contre les Grandes Endémies
- 173. Gateff C., Robin Y., Labusquière R., et al: Comparison of 2 yellow fever vaccines administered by pressure injector without needle [in French]. *Med Trop (Mars)* 1972; 32:193-197.
- 174. Roukens A.H.E., Gelinck L.B.S., Visser L.G.: Intradermal vaccination to protect against yellow fever and influenza. *Curr Top Microbiol Immunol* 2012; 351:159-179.
- 175. Tuft L.: Active immunization against typhoid fever, with particular reference to an intradermal method. *J Lab Clin Med* 1931; 16:552-556.
- 176. Nicholson K.G., Prestage H., Cole P.J., et al: Multisite intradermal antirabies vaccination. Lancet 1981; 2:915-918.
- 177. Bernard K.W., Roberts M.A., Sumner J., et al: Human diploid cell rabies vaccine: effectiveness of immunization with small intradermal or subcutaneous doses. *JAMA* 1982; 247:1138-1142.
- 178. Harverson G., Wasi C.: Use of post-exposure intradermal rabies vaccination in a rural mission hospital. *Lancet* 1984; 2:313-315.
- Warrell M.J., Nicholson K.G., Warrell D.A., et al: Economical multiple-site intradermal immunisation with human diploid-cell-strain vaccine is effective for post exposure rabies prophylaxis. *Lancet* 1985; 1:1059-1062.
- 180. Phanuphak P., Khawplod P., Sirivichayakul S., et al: Humoral and cell-mediated immune responses to various economical regimens of purified Vero cell rabies vaccine. *Asian Pac J Allergy Immunol* 1987; 5:33-37.
- 181. Chutivongse S., Wilde H., Spuich C., et al: Post-exposure prophylaxis for rabies with antiserum and intradermal vaccination. *Lancet* 1990; 335:896-898.
- 182. Briggs D.J., Banzhoff A., Nicolay U., et al: Antibody response of patients after postexposure rabies vaccination with small intradermal doses of purified chick embryo cell vaccine or purified Vero cell rabies vaccine. Bull World Health Organ 2000; 78:693-698
- 183. Madhusudana S.N., Sanjay T.V., Mehendra B.J., et al: Comparison of safety and immunogenicity of purified chick embryo cell rabies vaccine (PCECV) and purified Vero cell rabies vaccine (PVRV) using the Thai Red Cross intradermal regimen at a dose of 0.1 mL. *Hum Vaccin* 2006: 2:200-204.
- 184. Wilde H., Khawplod P., Khamoltham T., et al: Rabies control in South and Southeast Asia. Vaccine 2005; 23:2284-2289.
- 185. Warrell M.J.: Intradermal rabies vaccination: the evolution and future of pre- and post-exposure prophylaxis. *Curr Top Microbiol Immunol* 2012; 351:139-157.
- Halsey N.A., Reppert E.J., Margolis H.S., et al: Intradermal hepatitis B vaccination in an abbreviated schedule. Vaccine 1986; 4:228-232
- 187. King J.W., Taylor E.M., Crow S.D., et al: Comparison of the immunogenicity of hepatitis B vaccine administered intradermally and intramuscularly. *Rev Infect Dis* 1990; 12:1035-1043.
- 188. Bryan J.P., Sjogren M., Iqbal M., et al: Comparative trial of low-dose, intradermal, recombinant- and plasma-derived hepatitis B vaccines. *J Infect Dis* 1990; 162:789-793.
- 189. Bryan J.P., Sjogren M.H., Perine P.L., et al: Low-dose intradermal and intramuscular vaccination against hepatitis B. *Clin Infect Dis* 1992; 14:697-707.
- 190. Bryan J.P., Sjogren M.H., Macarthy P., et al: Persistence of antibody to hepatitis B surface antigen after low-dose, intradermal hepatitis B immunization and response to a booster dose. *Vaccine* 1992; 10:33-38.
- 191. Parish D.C., Muecke H.W., Joiner T.A., et al: Immunogenicity of low-dose intradermal recombinant DNA hepatitis B vaccine. *South Med J* 1991; 84:426-430.
- 192. Egeman A., Aksit S., Kurugol Z., et al: Low-dose intradermal versus intramuscular administration of recombinant hepatitis B vaccine: a comparison of immunogenicity in infants and preschool children. *Vaccine* 1998; 16:1511-1515.

- 193. Chen W., Gluud C.: Vaccines for preventing hepatitis B in health-care workers. Cochrane Database Syst Rev 2005; 4:CD000100
- 194. Whittle H.C., Lamb W.H., Ryder R.W.: Trial of intradermal hepatitis B vaccines in Gambian children. *Ann Trop Paediatr* 1987; 7:6-9.
- 195. Woodruff B.A., Moyer L.A.: Intradermal vaccination for hepatitis B [letter]. Clin Infect Dis 1992; 15:1063-1066.
- 196. Coberly J.S., Townsend T., Repke J., et al: Suboptimal response following intradermal hepatitis B vaccine in infants. *Vaccine* 1994; 12:984-987.
- 197. Centers for Disease Control and Prevention: Inadequate immune response among public safety worker receiving intradermal vaccination against hepatitis B: United States, 1990–1991. MMWR Morb Mortal Wkly Rep. 1991; 40:569-572.
- 198. Payton C.D., Scarisbrick D.A., Sikotra S., et al: Vaccination against hepatitis B: comparison of intradermal and intramuscular administration of plasma derived and recombinant vaccines. *Epidemiol Infect* 1993; 110:177-180.
- 199. Turchi M.D., Martelli C.M., Ferraz M.L., et al: Immunogenicity of low-dose intramuscular and intradermal vaccination with recombinant hepatitis B vaccine. *Rev Inst Med Trop Sao Paulo* 1997; 39:15-19.
- Sangaré L., Manhart L., Zehrung D., et al: Intradermal hepatitis B vaccination: a systematic review and meta-analysis. Vaccine 2009; 27:1777-1786.
- 201. Fabrizi F., Dixit V., Messa P., et al: Intradermal vs intramuscular vaccine against hepatitis B infection in dialysis patients: a meta-analysis of randomized trials. *J Viral Hepat* 2011; 18:730-737.
- 202. Gotschlich E.C., Rey M., Triau R., et al: Quantitative determination of the human immune response to immunization with meningococcal vaccines. *J Clin Invest* 1972; 51:89-96.
- 203. Sanofi-Aventis. Safety and immunogenicity of intradermal versus subcutaneous doses of Menomune. http://clinicaltrials.gov/ct2/show/results/NCT00850603. Identifier: NCT00850603.
- 204. McBean A.M., Agle A.N., Compaore P., et al: Comparison of intradermal and subcutaneous routes of cholera vaccine administration. *Lancet* 1972; 1:527-529.
- 205. Brindle R.J., Morris C.A., Berger R., et al: Inadequate response to intradermal hepatitis A vaccine. Vaccine 1994; 12:483-484.
- 206. Pancharoen C., Mekmullica J., Thisyakorn U., et al: Reduced-dose intradermal vaccination against hepatitis A with an aluminum-free vaccine is immunogenic and can lower costs. *Clin Infect Dis* 2005; 41:1537-1540.
- 207. Rossier E., Heiz R.: Essai clinique d'un vaccin mixte contre la diphtérie le tétanos et la coqueluche, administré par voie intradermique au moyen du "Dermo-Jet". *Schweiz Med Wochenschr* 1968; 98:1602-1608.
- 208. Stanfield J.P., Bracken P.M., Waddell K.M., et al: Diphtheria-tetanus-pertussis immunization by intradermal jet injection. *Br Med J* 1972; 2:197-199.
- 209. Mérieux C.: Single shot primovaccination against tetanus by needleless injectors. In: Echmann L., ed. Principles of Tetanus. Proceedings, International Conference on Tetanus; 15–19 July 1966, Bern, Switzerland: Verlag Hans Huber; 1967:423-436.
- 210. Dimache G., Stoean C., Durbaca S., et al: Study of specific immune response to unadsorbed concentrated tetanus vaccine administered by intradermal route to non-immunized persons in the last ten years. *Arch Roum Pathol Exp Microbiol* 1990; 49:51-62.
- 211. Wegmann A., Heiz R., Baumann T.: Auffrisch-Impfung mit einem Diphtherie-Tetanus-Impfstoff fur Dermo-Jet mit niedrigem Diphtherietoxoidgehalt. *Schweiz Med Wochenschr* 1976; 106:112-114.
- 212. Dimache G., Stoean C., Durbaca S., et al: Intradermal antitetanic-antityphoid booster by jet injection. *Roum Arch Microbiol Immunol* 1991; 50:117-125.
- Dimache G., Croitoru M., Velea V., et al: Intradermal antityphoid-antitetanus vaccination by jet injection. Roum Arch Microbiol Immunol 1991; 50:127-135.
- 214. Zoulek G., Roggendorf M., Deinhardt F.: Immune response to single dose, multisite, intradermal and to intramuscular administration of vaccine against tick-borne encephalitis virus. *Lancet* 1984; 2:584.
- 215. Zoulek G., Roggendorf M., Deinhardt F., et al: Different immune responses after intradermal and intramuscular administration of vaccine against tick-borne encephalitis virus. *J Med Virol* 1986; 19:55-61.
- 216. Kark J.D., Aynor Y., Peters C.J.: A Rift Valley fever vaccine trial, 2: serological response to booster doses with a comparison of intradermal versus subcutaneous injection. *Vaccine* 1985; 3:117-122.
- 217. Rey M., Baylet R., Cantrelle P., et al: Vaccination contre la rougeole en mileu rural sénégalais par un vaccin vivant suratténué (Schwarz) au moyen d'un injecteur sans aiguille (Dermojet). Possibilités d'association avec le vaccine. Bull Soc Méd Afr Noire Lang Fr 1965; 10:392-406.
- 218. Cooper C., Morley D.C., Weeks M.C., et al: Administration of measles vaccine by Dermojet. *Lancet* 1966; 1:1076-1077.
- 219. Hong Kong Measles Vaccine Committee: Comparative trial of live attenuated measles vaccine in Hong Kong by intramuscular and intradermal injection. *Bull World Health Organ* 1967; 36:375-384.
- 220. Calafiore D.C., Nader P.R., Lepow M.L., et al: Attenuated measles virus vaccine dosage study: Cleveland Ohio, 1966. *Am J Epidemiol* 1968; 87:247-253.
- 221. Rey M., Cantrelle P., Lafaix C., et al: Enseignements d'une campagne expérimentale de vaccination contre la rougeole en milieu urbain. *Bull Soc Méd Afr Noire Lang Fr* 1968; 13:291-310.
- Weibel R.E., Stokes Jr J., Buynak E.B., et al: Clinical-laboratory experiences with combined dried live measles-smallpox vaccine. *Pediatrics* 1966; 37:913-920.
- 223. Burland W.: Measles vaccination by the intradermal route. Postgrad Med J 1969; 45:323-326.

- Stanfield J.P., Bracken P.M.: Measles vaccination: studies in methods and cost reduction in developing countries. Trans R Soc Trop Med Hyg 1971; 65:620-628.
- 225. Wood P.B., Shoeranda K.S., Bracken P.M., et al: Measles vaccination in Zaire: when and how?. *Trans R Soc Trop Med Hyg* 1980; 74:381-382.
- 226. Kok P., Kenya P., Ensoring H.: Measles immunization with further attenuated heat-stable measles vaccine using five different methods of administration. *Trans R Soc Trop Med Hyg* 1983; 77:171-176.
- 227. Whittle H., Rowland M., Mann G., et al: Immunization of 4–6 month old Gambian infants with Edmonston- Zagreb measles vaccine. *Lancet* 1984; 1:834-837.
- de Moraes J.C., Leon M.E., Souza V.A., et al: Intradermal administration of measles vaccines. Bull Pan Am Health Organ 1994; 28:250-255.
- 229. Cutts F.T., Clements C.J., Bennett J.V.: Alternative routes of measles immunization: a review. *Biologicals* 1997; 25:323-338.
- 230. Osorio J.E., Huang C.Y.H., Kinney R.M., et al: Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. *Vaccine* 2011; 29:7251-7260.
- 231. Bakari M., Aboud S., Nilsson C., et al: Broad and potent immune responses to a low dose intradermal HIV-1 DNA boosted with HIV-1 recombinant MVA among healthy adults in Tanzania. *Vaccine* 2011; 29:8417-8428.
- 232. Epstein J.E., Tewari K., Lyke K.E., et al: Live attenuated malaria vaccine designed to protect through hepatic CD8 + T cell immunity. *Science* 2011; 334:475-480.
- 233. Baldwin S.L., Bertholet S., Kahn M., et al: Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. *Vaccine* 2009; 27:3063-3071.
- 234. Ulmer J.B., Donnelly J.J., Parker S.E., et al: Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993.1745-1749.
- 235. Plotkin S.A.: Vaccines: past, present and future. *Nat Med* 2005; 11:S5-11.
- 236. Drape R.J., Macklin M.D., Barr L.J., et al: Epidermal DNA vaccine for influenza is immunogenic in humans. *Vaccine* 2006; 24:4475-4481.
- 237. Mwau M., Cebere I., Sutton J., et al: A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. *J Gen Virol* 2004; 85:911-919.
- 238. Cebere I., Dorrell L., McShane H., et al: Phase I clinical trial safety of DNA- and modified virus Ankara-vectored human immunodeficiency virus type 1 (HIV-1) vaccines administered alone and in a prime-boost regime to healthy HIV-1-uninfected volunteers. *Vaccine* 2006; 24:417-425.
- 239. Stittelaar K.J., van Amerongen G., Kondova I., et al: Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. *J Virol* 2005; 79:7845-7851.
- 240. Peachman K.K., Rao M., Alving C.R.: Immunization with DNA through the skin. Methods 2003; 31:232-242.
- 241. Nathan C.F., Kaplan G., Levis W.R., et al: Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. *N Engl J Med* 1986; 315:6-15.
- 242. Fan H., Lin Q., Morrissey G.R., et al: Immunization via hair follicles by topical application of naked DNA to normal skin. *Nat Biotechnol* 1999; 17:870-872.
- 243. Bolgiano B., Mawas F., Yost S.E., et al: Effect of physico-chemical modification on the immunogenicity of Haemophilus influenzae type b oligosaccharide-CRM197 conjugate vaccines. *Vaccine* 2001; 19:3189-3200.
- 244. Partidos C.D., Beignon A-S, Mawasb F., et al: Immunity under the skin: potential application for topical delivery of vaccines. *Vaccine* 2003; 21:776-780.
- 245. Barry B.W.: Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 2001; 14:101-114.
- 246. Kendall M.: Engineering of needle-free physical methods to target epidermal cells for DNA vaccination. *Vaccine* 2006; 24:4651-4656.
- 247. Prausnitz M.R., Mikszta J.A., Raeder-Devens J.: *Microneedles*. In: Smith E.W., Maibach H.I., ed. *Percutaneous Penetration Enhancers*, 2nd ed. Boca Raton, FL: CRC Press; 2006:239-255.
- 248. Prausnitz M.R.: Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 2004; 56:581-587.
- 249. Lu B., Federoff H.J., Wang Y., et al: Topical application of viral vectors for epidermal gene transfer. *J Invest Dermatol* 1997; 108:803-808.
- 250. Seo N., Tokura Y., Nishijima T., et al: Percutaneous peptide immunization via corneum barrier-disrupted murine skin for experimental tumor immunoprophylaxis. *Proc Natl Acad Sci U S A* 2000; 97:371-376.
- 251. Takigawa M., Tokura Y., Hashizume H., et al: Percutaneous peptide immunization via corneum barrier-disrupted murine skin for experimental tumor immunoprophylaxis. *Ann N Y Acad Sci* 2001; 941:139-146.
- Kahlon R., Hu Y., Orteu C.H., et al: Optimization of epicutaneous immunization for the induction of CTL. Vaccine 2003; 21:2890-2899.
- 253. Godefroy S., Peyre M., Garcia N., et al: Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM(197), of diphtheria toxin. *Infect Immun* 2005; 73:4803-4809.
- 254. Choi M.J., Kim J.H., Maibach H.I.: Topical DNA vaccination with DNA/lipid based complex. Curr Drug Deliv 2006; 3:37-45.

- 255. Skountzou I., Quan F.-S., Jacob J., et al: Transcutaneous immunization with inactivated influenza virus induces protective immune responses. *Vaccine* 2006; 24:6110-6119.
- 256. Glenn G.M., Kenney R.T., Ellingsworth L.R., et al: Transcutaneous immunization and immunostimulant strategies: capitalizing on the immunocompetence of the skin. *Expert Rev Vaccines* 2003; 2:253-267.
- 257. Vogt A., Mahe B., Costagliola D., et al: Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. *J Immunol* 2008; 180:1482-1489.
- 258. Intercell AG. Vienna, Austria [acquired Iomai Corporation in 2008]. www.intercell.com
- Ideo Corporation. Transcutaneous immunization delivery method for Intercell. Palo Alto, CA. www.ideo.com/work/transcutaneous-immunization-delivery-method-for-intercell
- 260. Frerichs D.M., Ellingsworth L.R., Frech S.A., et al: Controlled, single-step, stratum corneum disruption as a pretreatment for immunization via a patch. *Vaccine* 2008; 26:2782-2787.
- 261. Intercell A.G.: Research at Intercell: platforms and products, 2009:1-120.Vienna, Austria www.intercell.com/fileadmin/user_upload/vaccperts/Scientific_publications/ICLL_Research_2009_web.pdf
- 262. Glenn G.M., Villar C.P., Flyer D.C., et al: Safety and immunogenicity of an enterotoxigenic Escherichia coli vaccine patch containing heat-labile toxin: use of skin pretreatment to disrupt the stratum corneum. *Infect Immun* 2007; 75:2163-2170.
- 263. Glenn G., Rao M., Matyas G.R., et al: Skin immunization made possible by cholera toxin. Nature 1998; 391:851.
- 264. Glenn G.M., Kenney R.T., Hammond S.A., et al: Transcutaneous immunization and immunostimulant strategies. *Immunol Allergy Clin North Am* 2003; 23:787-813.
- 265. Kenney R.T., Glenn G.M.: *Transcutaneous immunization using the heat-labile enterotoxin E. coli as an adjuvant*. In: Schijns V.E., O'Hagan D., ed. *Immunopotentiators in Modern Vaccines*, Amsterdam: Elsevier Academic Press; 2006:253-273.
- 266. Guereña-Burgueño F., Hall E.R., Taylor D.N., et al: Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. *Infect Immun* 2002; 70:1874-1880.
- 267. Glenn G.M., Taylor D.N., Li X., et al: Transcutaneous immunization: a human vaccine delivery strategy using a patch. *Nat Med* 2000; 6:1403-1406.
- 268. McKenzie R., Bourgeois A.L., Frech S.A., et al: Transcutaneous immunization with the heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC): protective efficacy in a double-blind, placebo-controlled challenge study. *Vaccine* 2007; 25:3684-3691.
- 269. Frech S.A., DuPont H.L., Bourgeois A.L., et al: Use of a patch containing heat-labile toxin from Escherichia coli against travelers' diarrhoea: a phase II, randomized, double-blind, placebo-controlled field trial. *Lancet* 2008; 371:2019-2025.
- 270. Intercell AG. Annual Report 2010. www.intercell.com/uploads/media/2010_Annual_Report.pdf
- 271. Chatterjee S. (principal investigator). ELT209: a phase two, multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy of the travelers diarrhea vaccine system in travelers to Asia.
 www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=972. Clinical Trials Registry India number: CTRI/2009/091/000802.
- 272. Intercell: Analyst Call, December 15, 2010. www.intercell.com/fileadmin/user_upload/investors/Presentations/Analyst_Call_2010_12_15_FINAL.pdf
- Guebre-Xabier M., Hammond S.A., Epperson D.E., et al: Immunostimulant patch containing heat-labile enterotoxin from Escherichia coli enhances immune responses to injected influenza virus vaccine through activation of skin dendritic cells. *J Virol* 2003; 77:5218-5225.
- 274. Guebre-Xabier M., Hammond S.A., Ellingsworth L.R., et al: Immunostimulant patch enhances immune responses to influenza virus vaccine in aged mice. *J Virol* 2004; 78:7610-7618.
- 275. Frech S.A., Kenney R.T., Spyr C.A., et al: Improved immune responses to influenza vaccination in the elderly using an immunostimulant patch. *Vaccine* 2005; 23:946-950.
- 276. Intercell: Intercell starts clinical trial in pandemic influenza with its Vaccine Enhancement Patch and provides update to the strategic collaboration with GSK on patches, 4 May 2011. http://www.intercell.com/main/company/news/news-full/article/intercell-starts-clinical-trial-in-pandemic-influenza-with-its-vaccine-enhancement-patch-and-provide/
- 277. Jilma B. (principal investigator). A phase 1/2, randomized, open-label, study to assess the immunogenicity and safety of a vaccine enhancement patch (VEP) when administered with two doses of intramuscular inactivated influenza H5N1 vaccine in healthy adults. Identifier: NCT01353534. http://clinicaltrials.gov/ct2/show/NCT01353534.
- 278. Hammond S.A., Walwender D., Alving C.R., et al: Transcutaneous immunization: T cell responses and boosting of existing immunity. *Vaccine* 2001; 19:2701-2707.
- 279. Kenney R.T., Yu J., Guebre-Xabier M., et al: Induction of protective immunity against lethal anthrax challenge with a patch_*J Infect Dis* 2004; 190:774-782.
- 280. Matyas G.R., Friedlander A.M., Glenn G.M., et al: Needle-free skin patch vaccination method for anthrax. *Infect Immun* 2004; 72:1181-1183.
- 281. Yu J., Cassels F., Scharton-Kersten T., et al: Transcutaneous immunization using colonization factor and heat-labile enterotoxin induces correlates of protective immunity for enterotoxigenic Escherichia coli. *Infect Immun* 2002; 70:1056-1068.
- Weltzin R., Guy B., Thomas Jr. W.D., et al: Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric Helicobacter pylori infection. *Infect Immun* 2000; 68:2775-2782.
- 283. Zhu C., Yu J., Yang Z., et al: Protection against Shiga toxin-producing Escherichia coli infection by transcutaneous immunization with Shiga toxin subunit B. *Clin Vaccine Immunol* 2008; 15:359-366.
- 284. Tao S.L., Desai T.A.: Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 2003; 55:315-328.

- 285. Mikszta J.A., Alarcon J.B., Brittingham J.M., et al: Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. *Nat Med* 2002; 8:415-419.
- 286. Van Kampen K.R., Shi Z., Gao P., et al: Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans. *Vaccine* 2005; 23:1029-1036.
- 287. Vaxin, Inc. Birminghan AL. 35203. www.vaxin.com
- 288. Shi Z., Zeng M., Yang G., et al: Protection against tetanus by needle-free inoculation of adenovirus-vectored nasal and epicutaneous vaccines. *J Virol* 2001; 75:11474-11482.
- 289. Zhang J., Shi Z., Kong F.K., et al: Topical application of Escherichia coli-vectored vaccine as a simple method for eliciting protective immunity. *Infect Immun* 2006; 74:3607-3617.
- 290. Draize J.H., Woodward G., Calvery H.O.: Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. *J Pharmacol Exp Ther* 1944; 82:377-390.
- 291. Cheng J.-Y., Huang H.-N., Tseng W.-C., et al: Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. *J Control Release* 2009; 135:242-249.
- 292. Sachdeva V., Banga A.K.: Microneedles and their applications. Recent Pat Drug Deliv Formul 2011; 5:95-132.
- 293. Garland M.J., Migalska K., Mahmood T.M.T., et al: Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev Med Devices 2011; 8:459-482.
- 294. 3M Corporation. Minneapolis, MN: 3M Drug Delivery Systems. www.3m.com
- 295. 3M Corporation. 3M Microchannel Skin System. www.3M.com/microchannel
- 296. Alam M. (principal investigator). Tolerability study of the application of a 3M microstructure transdermal system. ClinicalTrials.gov identifier NCT01257763. http://clinicaltrials.gov/ct2/show/NCT01257763
- 297. Moeckly C., Hansen K., Gysbers J., et al: Formation of microchannels in skin with a hand-applied, plastic microneedle array.

 Annual Meeting of the American Association of Pharmaceutical Scientists, 23–27 October 2011. Washington, DC; (presentation R6196). Abstract: http://app.imswift.com/aaps 2011/sessions/R6196
- 298. Duan D., Moeckly C., Gysbers J., et al: Enhanced delivery of topically-applied formulations following skin pre-treatment with a hand-applied, plastic microneedle array. *Curr Drug Deliv* 2011; 8:557-565.
- 299. MicroCor solid microneedle patch. Corplex hydrogel polymer for drug formulation. Menlo Park, CA: Corium International, Inc. www.coriumgroup.com (solid microneedle technology acquired from Proctor & Gamble Company).
- 300. Yuzhakov V.V., Sherman F.F., Owens G.D., et al: *Intracutaneous microneedle array apparatus*. (US Patent 6,931,277 B1)Washington, DC, United States Patent and Trademark Office, 2005. issued August 16(assignee: Proctor & Gamble Co.)
- 301. Functional MicroArray (FMA) patch. Albany, NY: Nanomed Devices, Inc. www.nanomed-devices.com
- 302. Micro-Trans solid microneedle; Mini-Ject jet injector. Bridgewater, NJ: Valeritas, Inc. (a wholly owned subsidiary of Biovalve Technologies, Inc.). www.biovalve.com, and www.valeritas.com
- 303. ZP Patch microneedle patch platform; IONSYSTM and E-TRANS iontophoresis technology. Fremont, CA: Zosano Pharma, Inc. (formerly Macroflux Corporation and ALZA Corp., subsidiary of Johnson & Johnson), www.zosanopharma.com
- 304. Daddona P.E., Matriano J.A., Mandema J., et al: Parathyroid hormone (1–34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. *Pharm Res* 2010; 28:159-165.
- 305. Matriano J.A., Cormier M., Johnson J., et al: Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. *Pharm Res* 2002; 19:63-70.
- 306. Zosano Pharma: Zosano Pharma Overview. 10 November 2010. http://www.zosanopharma.com/images/stories/presentations/corp_overview_presentation_nov2010_v4.pdf
- 307. Zosano Pharma. Zosano's rapid delivery patch has been tested in more than 450 patients with five different peptides and a vaccine. www.zosanopharma.com/index.php?option=com_content&task=view&id=126&Itemid=166
- 308. Widera G., Johnson J., Kim L., et al: Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. *Vaccine* 2006; 24:1653-1664.
- 309. Lin W., Cormier M., Samiee A., et al: Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux) technology. *Pharm Res* 2001; 18:1789-1793.
- 310. Cormier M., Johnson B., Ameri M., et al: Transdermal delivery of desmopressin using a coated microneedle array patch system. *J Control Release* 2004; 97:503-511.
- 311. Hansen K, Determan A, Burton S, et al. Microneedle enabled intradermal delivery. http://solutions.3m.com/wps/portal/3M/en_WW/DrugDeliverySystems/DDSD/technology-solutions/transdermal-technologies/publications
- 312. Hansen K., Haldin B.: A solid microstructured transdermal system (sMTS) for systemic delivery of salts and proteins. *Drug Deliv Technol* 2008; 8:38-42.[accessed 12.12.11]
- 313. 3M Corporation: The 3M Microstructured Transdermal System (MTS): White Paper. Spring, 2009. http://solutions.3m.com/3MContentRetrievalAPI/BlobServlet?locale=en_WW&lmd=1262009493000&assetId=1258559455435&assetType=MMM_Image&blobAttribute=ImageFile
- 314. Hansen K., Burton S., Tomai M.: A hollow microstructured transdermal system (hMTS) for needle-free delivery of biopharmaceuticals. *Drug Deliv Technol* 2009; 9:38-44.Online[accessed 12.12.11]

- 315. Raeder-Devens J.: *Microstructured Transdermal System (MTS). 3M Drug Delivery Systems Transdermal Publications*, 2004. [accessed 12.12.11] http://solutions.3m.com/wps/portal/3M/en_ww/3M-DDSD/Drug-Delivery-Systems/Transdermal-Microneedle-Directory/Posters-Presentations
- 316. Peterson T.A., Wick S.M., Ko C.: Design, development, manufacturing, and testing of transdermal drug delivery systems. In: Ghosh T., Pfister W., Yum S.I., ed. Transdermal and Topical Drug Delivery Systems, Buffalo Grove, IL: Interpharm; 1997:249-297.
- 317. Gordon R.D., Peterson T.A.: 4 Myths about transdermal drug delivery. Drug Deliv Technol 2003; 3:1-4.[accessed 12.12.11]
- 318. Johnson P.R., Li J., Emery M.R.: Method development for quantification of tetanus toxoid and aluminum on microneedle arrays. WCBP 2005-9th Symposium on the Interface of Regulatory and Analytical Sciences for Biotechnology Health Products, 2005. Washington, DC., 10–13 January Abstract P-05-T.
- 319. Hansen K.J., Duan D., Determan A., et al: *Transdermal delivery of vaccines and proteins using a hand-applied, polymeric microstructured array (sMTS-hand and Press&Patch) (poster 439). Portland*, 2010.OR: 37th Annual Meeting and Exposition of the Controlled Release Society. 10–14 July https://solutions.3m.com/wps/portal/3M/en_www/DrugDeliverySystems/DDSD/technology-solutions/transdermal-technologies/microstructured-transdermal-systems
- 320. Brandwein D., Gysbers J., Johnson P., et al: Transcutaneous immunization of two vaccine antigens using 3M Drug Delivery System's solid Microstructured Transdermal System (sMTS) technology, and synergy with resiquimod, a toll-like receptor (TLR) 7/8 agonist, in hairless guinea pigs (poster). First International Conference on Microneedles, Atlanta, GA: Georgia Institute of Technology; 23–25 May 2010.
- 321. 3M Corporation. 3M Solid Microneedle System: antibody response following sMTS delivery of vaccine. http://solutions.3m.com/wps/portal/3M/en_WW/DrugDeliverySystems/DDSD/technology-solutions/transdermal-technologies/microstructured-transdermal-systems/solid
- 322. Wolter J., Brandwein D., Choi H., et al: *Antigen-adjuvant dose response in a rabbit model using 3M's Microstructured Transdermal System. 33th Annual Meeting of the Controlled Release Society*, 18–22 June 2005.Miami, FL
- 323. School of Chemical and Biomolecular Engineering, Georgia Institute of Technology. Atlanta, GA. www.chbe.gatech.edu
- 324. Gill H.S., Prauznitz M.R.: Coated microneedles for transdermal delivery. J Control Release 2007; 117:227-237.
- 325. Koutsonanos D.G., del Pilar Martin M., et al: Transdermal influenza immunization with vaccine-coated microneedle arrays. *PLoS ONE* 2009; 4:e4773.
- Weldon W.C., Martin M.P., Zarnitsyn V., et al: Microneedle vaccination with stabilized recombinant influenza virus hemagglutinin induces improved protective immunity. *Clin Vaccine Immunol* 2011; 18:647-654.
- 327. Koutsonanos D.G., del Pilar Martin M., Zarnitsyn V.G., et al: Serological memory and long-term protection to novel H1N1 influenza virus after skin vaccination. *J Infect Dis* 2011; 204:582-591.
- 328. Kim Y.-C., Quan F.-S., Yoo D.-G., et al: Improved influenza vaccination in the skin using vaccine coated microneedles. *Vaccine* 2009; 27:6932-6938.
- 329. Quan F.-S., Kim Y.-C., Compans R.W., et al: Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. *J Control Release* 2010; 147:326-332.
- 330. Kim Y.-C., Quan F.-S., Compans R.W., et al: Formulation of microneedles coated with influenza virus-like particle vaccine. *AAPS Pharm Sci Tech* 2010; 11:1193-1201.
- 331. Kim Y.-C., Quan F.-S., Yoo D.-G., et al: Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. *J Infect Dis* 2010; 201:190-198.
- 332. Song J.-M., Kim Y.-C., Barlow P.G., et al: Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. *Antiviral Res* 2010; 88:244-247.
- 333. Kim Y.-C., Quan F.-S., Song J.-M., et al: Influenza immunization with trehalose-stabilized virus-like particle vaccine using microneedles. *Proced Vaccinol* 2010; 2:15-19.
- 334. Kim Y.-C., Quan F.-S., Compans R.W., et al: Stability kinetics of influenza vaccine coated onto microneedles during drying and storage. *Pharm Res* 2011; 28:135-144.
- 335. Hiraishi Y., Nandakumar S., Choi S.-O., et al: Bacillus Calmette-Guérin vaccination using a microneedle patch. *Vaccine* 2011; 29:2626-2636.
- 336. Bio-Rad Laboratories, Inc. Hercules, CA. www.bio-rad.com
- 337. Agracetus campus, Monsanto Company. St. Louis, MO. www.monsanto.com
- 338. Gill H.S., Söderholm J., Prausnitz M.R., et al: Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. *Gene Ther* 2010; 17:811-814.
- Wang Y., Azevedo M., Saif L.J., et al: Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets. *Vaccine* 2010; 28:5432-5436.
- 340. Jiang B.: Vaccination against rotavirus using microneedles. *Skin Vaccination Summit 2011*, Washington, DC: Meetings Management, Ltd; 12–14 October 2011.
- 341. Shire S.J.: Formulation and manufacturability of biologics. Curr Opin Biotechnol 2009; 20:708-714.
- 342. Chen X., Prow T.W., Crichton M.L., et al: Dry-coated microprojection patches for targeted delivery of immunotherapeutics to the skin. *J Control Release* 2009; 139:212-220.
- 343. Park K.: Dry coating of immunotherapeutics to densely packed and short microprojection arrays. J Control Release 2009; 139:171.
- 344. Crichton M.L., Ansaldo A., Chen X., et al: The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine. *Biomaterials* 2010; 31:4562-4572.

- 345. Fernando G.J., Chen X., Prow T.W., et al: Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model. *PLoS ONE* 2010; 5:e10266.
- 346. Chen X., Fernando G.J.P., Crichton M.L., et al: Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. *J Control Release* 2011; 152:349-355.
- 347. Nanopatch microneedle platform. Sydney, Australia: Vaxxas Pty, Ltd. www.one-ventures.com/portfolio/vaxxas
- 348. Corbett H.J., Fernando G.J.P., Chen X., et al: Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. *PLoS ONE* 2010; 5:e13460.
- 349. Chen X., Kask A.S., Crichton M.L., et al: Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. *J Control Release* 2010; 148:327-333.
- 350. Kask A.S., Chen X., Marsha J.O., et al: DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge. *Vaccine* 2010; 28:7483-7491.
- 351. Prow T.P., Chen X., Prow N.A., et al: Nanopatch: targeted skin vaccination against West Nile virus and Chikungunya virus in mice. Small 2010; 6:1776-1784.
- 352. Coulman S.A., Barrow D., Anstey A., et al: Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. *Curr Drug Deliv* 2006; 3:65-75.
- 353. Haq M.I., Smith E., John D.N., et al: Clinical administration of microneedles: skin puncture, pain and sensation. *Biomed Microdevices* 2009; 11:35-47.
- 354. Pearton M., Kang S-M, Song J-M, et al: Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. *Vaccine* 2010; 28:6104-6113.
- 355. Birchall J.C., Clemo R., Anstey A., et al: Microneedles in clinical practice: an exploratory study into the opinions of healthcare professionals and the public. *Pharm Res* 2011; 28:95-106.
- 356. Nanoject microneedle platform. Lausanne, Switzerland: Debiotech S.A. www.debiotech.com/products/msys/uneedle.html
- 357. Migalska K., Morrow D.I.J., Garland M.J., et al: Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. *Pharm Res* 2011; 28:1919-1930.
- 358. Chu L.Y., Prausnitz M.R.: Separable arrowhead microneedles. J Control Release 2011; 149:242-249.
- 359. Sullivan S.P., Koutsonanos D.G., del Pilar Martin M., et al: Dissolving polymer microneedle patches for influenza vaccination. *Nat Med* 2010; 16:915-920.
- 360. Sullivan S.P., Murthy N., Prausnitz M.R.: Minimally invasive protein delivery with rapidly dissolving polymer microneedles. *Adv Mat* 2008; 20:933-938.
- Chu L.Y., Choi S.-O., Prausnitz M.R.: Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs. *J Pharmaceut Sci* 2010; 99:4228-4238.
- 362. Li G., Badkar A., Nema S., et al: In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. *Int J Pharm* 2009; 368:109-115.
- 363. Miyano T., Tobinaga Y., Kanno T., et al: Sugar micro needles as transdermic drug delivery system. *Biomed Microdevices* 2005; 7:185-188.
- 364. Kristensen D., Chen S., Cummings R.: Vaccine stabilization: research, commercialization, and potential impact. *Vaccine* 2011; 29:7122-7124.
- 365. CosMED Microneedle. World First Microneedle Product. Kyoto, Japan: CosMED Pharmaceutical Co., Ltd. www.cosmed-pharm.co.jp/english/microneedle.htm and www.cosmed-pharm.co.jp/english/research.htm
- 366. Microneedle Array for Transdermal (MAT) drug delivery system. Fremont, CA: TheraJect, Inc. www.theraject.com
- 367. Raphael A.P., Prow T.W., Crichton M.L., et al: Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. *Small* 2010; 6:1785-1793.
- 368. McAllister D.V., Wang P.M., Davis S.P., et al: Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. *Proc Natl Acad Sci U S A* 2003; 100:13755-13760.
- 369. Prausnitz M.R.: Personal communication. Georgia Institute of Technology, 2007.
- 370. Kaushik S., Hord A.H., Denson D.D., et al: Lack of pain associated with microfabricated microneedles. *Anesth Analg* 2001; 92:502-504
- 371. MicronJet 600 microneedle-delivery intradermal adapter. Haifa, Israel: NanoPass Technologies Ltd. www.nanopass.com
- 372. Committee for Proprietary Medicinal Products (CPMP): *Note for guidance on harmonization of requirements for influenza vaccines*. London, European Agency for the Evaluation of Medicinal Products (EMEA), 12 March 1997. Document CPMP/BWP/214/96
- Hung I.F.N., Levin Y., To K.K.W., et al: Quantitative and qualitative analysis of antibody response after dose sparing intradermal 2009 H1N1 vaccination. *Vaccine* 2012; 30:2707-2708.
- 374. Hung IFN. (principal investigator). Safety and efficacy of dose sparing intradermal 2010/2011 trivalent influenza vaccination with the novel microneedle delivery device. Identifier: NCT01304563. http://clinicaltrials.gov/ct2/show/NCT01304563
- 375. Levin Y.: A novel microneedle device for ID delivery of vacines: clinical experience and commercial opportunities. Skin Vaccination Summit 2011, Washington, DC: Meetings Management, Ltd; 12–14 October 2011.
- 376. Burton S.A., Ng C-Y, Simmers R., et al: Rapid intradermal delivery of liquid formulations using a hollow microstructured array. *Pharm Res* 2011; 28:31-40.

- 377. van den Berg J.H., Nujien B., Beijnen J.H., et al: Optimization of intradermal vaccination by DNA tattooing in human skin. *Hum Gene Ther* 2009; 20:181-189.
- 378. Swain S., Beg S., Singh A., et al: Advanced techniques for penetration enhancement in transdermal drug delivery system. *Curr Drug Deliv* 2011; 8:456-473.
- 379. Oosterhuis K., van den Berg J.H., Schumacher T.N., et al: DNA vaccines and intradermal vaccination by DNA tattooing. *Curr Top Microbiol Immunol* 2012; 351:221-250.
- 380. Nelson J.S., McCullough J.L., Glenn T.C., et al: Mid-infrared laser ablation of stratum corneum enhances in vitro percutaneous transport of drugs. *J Invest Dermatol* 1991; 97:874-879.
- 381. Lee W-R, Shen S-C, Lai H-H, et al: Transdermal drug delivery enhanced and controlled by erbium: YAG laser: a comparative study of lipophilic and hydrophilic drugs. *J Control Release* 2001; 75:155-166.
- 382. Baron E.D., Harris L., Redpath W.S., et al: Laser-assisted penetration of topical anesthetic in adults. *Arch Dermatol* 2003; 139:1288-1290.
- 383. Singer A.J., Weeks R., Regev R.: Laser-assisted anesthesia reduces the pain of venous cannulation in children and adults: a randomized controlled trial. *Acad Emerg Med* 2006; 13:623-628.
- 384. Norwood Abbey, Ltd. Victoria, Australia. http://medicaldevicelicensing.com/public/companies/view/8890/norwood-abbey
- 385. P.L.E.A.S.E. painless laser epidermal system. Liechtenstein: Pantec Biosolutions AG; www.pantec-biosolutions.com/p.l.e.a.s.e.-platform
- 386. Bachhav Y.G., Heinrich A., Kalia Y.N.: Using laser microporation to improve transdermal delivery of diclofenac: Increasing bioavailability and the range of therapeutic applications. *Eur J Pharm Biopharm* 2011; 78:408-414.
- 387. Lee S., McAuliffe D.J., Flotte T.J., et al: Photomechanical transcutaneous delivery of macromolecules. *J Invest Dermatol* 1998; 111:925-929.
- 388. Lee S., Kollias N., McAuliffe D.J., et al: Topical drug delivery in humans with a single photomechanical wave. *Pharm Res* 1999; 16:1717-1721.
- 389. Lee S., McAuliffe D.J., Kollias N., et al: Photomechanical delivery of 100-nm microspheres through the stratum corneum: implications for transdermal drug delivery. *Lasers Surg Med* 2002; 31:207-210.
- 390. Ludec S.: Electric Ions and Their Use in Medicine. London, Robman, 1908.
- 391. Panus P.C., Campbell J., Kulkarni S.B., et al: Transdermal iontophoretic delivery of ketoprofen through human cadaver skin and in humans. *J Control Release* 1997; 44:113-121.
- 392. Banga A.K.: Electrically Assisted Transdermal and Topical Drug Delivery. London, UK, Taylor & Francis, 1998.
- 393. Naik A., Kalia Y.N., Guy R.H.: Transdermal drug delivery: overcoming the skin's barrier function. *Pharm Sci Technol Today* 2000; 3:318-326.
- 394. Sugibayashi K., Kagino M., Numajiri S., et al: Synergistic effects of iontophoresis and jet injector pretreatment on the in-vitro skin permeation of diclofenac and angiotensin II. *J Pharm Pharmacol* 2000; 52:1179-1186.
- 395. Kalia Y.N., Naik A., Garrison G., et al: Iontophoretic drug delivery. Adv Drug Deliv Rev 2004; 56:619-658.
- 396. LidoSite and Actyve iontophoresis technology. Fair Lawn, NJ: Vyteris, Inc. www.vyteris.com
- 397. Guy R.H., Kalia Y.N., Delgado-Charro M.B., et al: Iontophoresis: electrorepulsion and electroosmosis. *J Control Release* 2000; 64:129-132.
- 398. Bramson J., Dayball K., Evelegh C., et al: Enabling topical immunization via microporation: a novel method for pain-free and needlefree delivery of adenovirus-based vaccines. *Gene Ther* 2003; 10:251-260.
- 399. Banga A.K.: Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv 2009; 6:343-354.
- 400. Altea Therapeutics Corporation. Tucker, GA. Altea assets acquired in 2012 by Nitto Denko, Japan. www.nitto.com/dpage/218.html
- 401. Garg S., Hoelscher M., Belser J.A., et al: Needle-free skin patch delivery of a vaccine for a potentially pandemic influenza virus provides protection against lethal challenge in mice. *Clin Vaccine Immunol* 2007; 14:926-928.
- 402. Smith A.M., Eppstein J.A., Delcher H.K., et al: Transdermal insulin infusion through thermally created micropores in humans. *Diabetes* 2001; 50:A132.
- 403. Smith A.M., Woods T.J., Williams D.J., et al: *Transdermal basal insulin delivery through micropores*. San Francisco, CA62nd Scientific Sessions of the American Diabetes Association, September 14–18, 2002. Abstract 191-OR
- 404. Smith A., Yang D., Delcher H., et al: Fluorescein kinetics in interstitial fluid harvested from diabetic skin during fluorescein angiography: implications for glucose monitoring. *Diabetes Technol Ther* 1999; 1:21-27.
- 405. TransPharma Medical Ltd. Lod 71291, Israel. web.archive.org/web/20110706101034/http://www.transpharma-medical.com
- 406. Lee J.W., Gadiraju P., Park J.-H., et al: Microsecond thermal ablation of skin for transdermal drug delivery. *J Control Release* 2011; 154:58-68.
- 407. Prausnitz M.R., Bose V.G., Langer R., et al: Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. *Proc Natl Acad Sci US A* 1993; 90:10504-10508.
- 408. Prausnitz M.R.: A practical assessment of transdermal drug delivery by skin electroporation. Adv Drug Deliv Rev 1999; 35:61-76.
- 409. Vanbever R., Préat V.: In vivo efficacy and safety of skin electroporation. Adv Drug Deliv Rev 1999; 35:77-88.
- 410. Lombry C., Dujardin N., Préat V.: Transdermal delivery of macromolecules using skin electroporation. *Pharm Res* 2000; 17:32-37.
- 411. Sintov A.C., Krymberka I., Daniel D., et al: Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. *J Control Release* 2003; 89:311-320.

- 412. Prud'homme G.J., Glinka Y., Khan A.S., et al: Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. *Curr Gene Ther* 2006; 6:243-273.
- 413. Zhang L., Nolan E., Kreitschitz S., et al: Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. *Biochim Biophys Acta* 2002; 1572:1-9.
- 414. Babiuk S., Baca-Estrada M.E., Foldvari M., et al: Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. *Mol Ther* 2003; 8:992-998.
- 415. Andre F., Mir L.M.: DNA electrotransfer: its principles and an updated review of its therapeutic applications. *Gene Ther* 2004; 11(Suppl. 1):S33-S42.
- 416. Sardesai N.Y., Weiner D.B.: Electroporation delivery of DNA vaccines: prospects for success. *Curr Opin Immunol* 2011; 23:421-429
- 417. Easy Vax epidermal electroporation system. Glen Burnie, MD: Cyto Pulse Sciences, Inc. www.cytopulse.com
- 418. Hooper J.W., Golden J.W., Ferro A., et al: Smallpox DNA vaccine delivered by novel electroporation device protects mice against intranasal poxvirus challenge. *Vaccine* 2007; 25:1814-1823.
- 419. Roos A.K., Eriksson F., Walters D.C., et al: Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. *Mol Ther* 2009; 17:1637-1642.
- 420. Otten G.R., Schaefer M., Doe B., et al: Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. *Vaccine* 2006; 24:4503-4509.
- 421. Li Z., Zhang H., Fan X., et al: DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. *Vaccine* 2006; 24:4565-4568.
- 422. Aditus Medical AB. Lund, Sweden. www.aditusmedical.com
- 423. Khan A.S., Draghia-Akli R.: Improvement of electroporation devices and methods for use with plasmid-based therapeutics and DNA vaccine applications in small and large animals. *Molec Ther* 2005; 11:S74-S75.190[accessed 03-06-12]
- 424. BTX Instrument Division, Harvard Apparatus, Inc. Holliston, MA. www.btxonline.com
- 425. Inovio Biomedical Corporation. San Diego, CA. www.inovio.com
- 426. Ichor Medical Systems, Inc. San Diego, CA. www.ichorms.com
- 427. Luxembourg A., Hannaman D., Ellefsen B., et al: Enhancement of immune responses to an HBV DNA vaccine by electroporation. *Vaccine* 2006; 24:4490-4493.
- 428. Mitragotri S., Blankschtein D., Langer R.: Ultrasound-mediated transdermal protein delivery. Science 1995; 269:850-853.
- 429. Mitragotri S., Kost J.: Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 2004; 56:589-601.
- 430. Lavon I., Kost J.: Ultrasound and transdermal drug delivery. Drug Discov Today 2004; 9:670-676.
- 431. Tezel A., Paliwal S., Shen Z., et al: Low-frequency ultrasound as a transcutaneous immunization adjuvant. *Vaccine* 2005; 23:3800-3807.
- 432. Tachibana K., Tachibana S.: Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol 1991; 43:270-271.
- 433. Merino G., Kalia Y.N., Guy R.H.: Ultrasound-enhanced transdermal transport. J Pharm Sci 2003; 92:1125-1137.
- 434. Sontra Medical Corporation. Franklin, MA. www.sontra.com
- 435. ImaRx Therapeutics, Inc. Tucson, AZ. www.imarx.com
- 436. Klein T.M., Wolf E.D., Wu R., et al: High velocity microprojectiles for delivering nucleic acids into living cells. *Nature* 1987; 327:70-73.
- 437. Wang S., Joshi S., Lu S.: *Delivery of DNA to skin by particle bombardment*. In: Heiser W.D., ed. [Methods in Molecular Biology series, vol. 245]. *Gene Delivery to Mammalian Cells, vol. 1: Nonviral Gene Transfer Techniques*, Totowa, NJ: Humana; 2003:185-196.
- 438. Williman J., Lockhart E., Slobbe L., et al: The use of Th1 cytokines, IL-12 and IL-23, to modulate the immune response raised to a DNA vaccine delivered by gene gun. *Vaccine* 2006; 24:4471-4474.
- 439. McCluskie M.J., Brazolot Millan C.L., et al: Route and method of delivery of DNA vaccine influence immune responses in mice and non-human primates. *Mol Med* 1999; 5:287-300.
- 440. Weiss R., Scheiblhofer S., Freund J., et al: Gene gun bombardment with gold particles displays a particular Th2-promoting signal that overrules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine 2002; 20:3148-3154.
- 441. PowderMed Limited. Oxford, England (subsidiary of Pfizer). web.archive.org/web/20110128085921/http://powdermed.com/
- 442. Chen D., Maa Y.F., Haynes J.R.: Needle-free epidermal powder immunization. Expert Rev Vaccines 2002; 1:265-276.
- 443. Novartis Vaccines & Diagnostics. (acquired former Chiron Corporation, Emeryville, CA), Cambridge, MA. www.novartisvaccines.com
- 444. Pfizer, Inc. New York, NY. www.pfizer.com
- 445. Chen D., Weis K.F., Chu Q., et al: Epidermal powder immunization induces both cytotoxic T-lymphocyte and antibody responses to protein antigens of influenza and hepatitis B viruses. *J Virol* 2001; 75:11630-11640.
- 446. Chen D., Endres R., Maa Y.F., et al: Epidermal powder immunization of mice and monkeys with an influenza vaccine. Vaccine 2003; 21:2830-2836.
- 447. Dean H.J., Fuller D., Osorio H.E.: Powder and particle-mediated approaches for delivery of DNA and protein vaccines into the epidermis. *Comp Immunol Microbiol Infect Dis* 2003; 26:373-388.

- 448. Sharpe M., Lynch D., Topham S., et al: Protection of mice from H5N1 influenza challenge by prophylactic DNA vaccination using particle mediated epidermal delivery. *Vaccine* 2007; 25:6392-6398.
- 449. Loudon P.T., Yager E.J., Lynch D.T., et al: GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. *PLoS ONE* 2010; 5:e11021.
- 450. Tacket C.O., Roy M.J., Widera G., et al: Phase I safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. *Vaccine* 1999; 17:2826-2829.
- 451. Roy M.J., Wu M.S., Barr L.J., et al: Induction of antigen-specific CD8 T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. *Vaccine* 2001; 19:764-778.
- 452. Rottinghaus S.T., Poland G.A., Jacobson R.M., et al: Hepatitis B DNA vaccine induces protective antibody responses in human non-responders to conventional vaccination. *Vaccine* 2003; 21:4604-4608.
- 453. Roberts L.K., Barr L.J., Fuller D.H., et al: Clinical safety and efficacy of a powdered hepatitis B nucleic acid vaccine delivered to the epidermis by a commercial prototype device. *Vaccine* 2005; 23:4867-4878.
- 454. McConkey S.J., Reece W.H., Moorthy V.S., et al: Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. *Nat Med* 2003; 9:729-735.
- 455. Moorthy V.S., McConkey S., Roberts M., et al: Safety of DNA and modified vaccinia virus Ankara vaccines against liver-stage P. falciparum malaria in non-immune volunteers. *Vaccine* 2003; 21:1995-2002.
- 456. Dean H.J., Chen D.: Epidermal powder immunization against influenza. Vaccine 2004; 23:681-686.
- 457. Jones S., Evans K., McElwaine-Johnna H., et al: DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. *Vaccine* 2009; 27:2506-2512.
- Mant T. Safety study of an influenza vaccine against a potential pandemic strain of flu. www.clinicaltrials.gov/ct/show/NCT00347529; [accessed 22.11.06].
- 459. Komjathy S. A safety study to assess a DNA vaccine administered by particle mediated delivery to the skin in healthy subjects. www.clinicaltrials.gov/ct/show/NCT00310271; [accessed 22.11.06].
- 460. America's Health Insurance Plans. Emerging vaccine chart: July, 2006 report. web.archive.org/web/20110108020806/http://www.ahip.org/content/default.aspx?docid=11691; [accessed 26.11.06].
- 461. Oxford PharmaGenesis, Ltd: *Pandemic influenza and biothreat preparedness: role of PMED(tm) DNA vaccines.* 2005. Oxford, UK [accessed 26.11.06] web.archive.org/web/20070316184754/http://www.powdermed.com/pdf/Flu%20Brochure%20Dec%202005.pdf
- 462. Pilling A.M., Harman R.M., Jones S.A., et al: The assessment of local tolerance, acute toxicity, and DNA biodistribution following particle-mediated delivery of a DNA vaccine to minipigs. *Toxicol Pathol* 2002; 30:298-305.
- PowderMed particle-mediated epidermal delivery (PMED) clinical trial registrations. Identifiers: NCT00310271, NCT00375206, NCT00274300, NCT00347529, NCT00349037, NCT00277576. http://ClinicalTrials.gov
- 464. Schmaljohn C., Vanderzanden L., Bray M., et al: Naked DNA vaccines expressing the prM and E genes of Russian spring summer encephalitis virus and Central European encephalitis virus protect mice from homologous and heterologous challenge. *J Virol* 1997; 71:9563-9569.
- 465. Hooper J.W., Custer D.M., Thompson E., et al: DNA vaccination with the Hantaan virus M gene protects hamsters against three of four HFRS hantaviruses and elicits a high-titer neutralization antibody response in Rhesus monkeys. *J Virol* 2001; 75:8469-8477.
- 466. Chen D., Zuleger C., Chu Q., et al: Epidermal powder immunization with a recombinant HIV gp120 targets Langerhans cells and induces enhanced immune responses. *AIDS Res Hum Retroviruses* 2002; 18:715-722.
- Fuller D.H., Shipley T., Allen T.M., et al: Immunogenicity of hybrid DNA vaccines expressing hepatitis B core particles carrying human and simian immundeficiency virus epitopes in mice and rhesus macaques. *Virology* 2007; 364:245-255.
- 468. Sakai T., Hisaeda H., Nakano Y., et al: Gene gun-based co-immunization of merozoite surface protein-1 cDNA with IL-12 expression plasmid confers protection against lethal Plasmodium yoelii in A/J mice. *Vaccine* 2003; 21:1432-1444.
- 469. Kim T.W., Lee J.H., Hung C.F., et al: Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute resipiratory syndrome coronavirus. *J Virol* 2004; 78:4638-4645.
- Hooper J.W., Thompson E., Wilhelmsen C., et al: Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol 2004; 78:4433-4443.
- 471. Dupuy L.C., Richards M.J., Reed D.S., et al: Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. *Vaccine* 2010; 28:7345-7350.
- 472. Glide solid dose injector (SDI). Abingdon, Oxfordshire, UK: Glide Pharma. www.glidepharma.com
- 473. Potter C., Bennet S.: A solid alternative to needle and syringe technology. Drug Deliv Technol 2009; 9:24-30.[accessed 12.12.11]
- 474. Potter C.: Needle-free injection. Pharm Tech Eur 2011; 23:30-32 [accessed 12.12.11]
- 475. Herndon TO, Gonzalez S., Gowrishankar T.R., et al: Transdermal microconduits by microscission for drug delivery and sample acquisition. *BMC Med* 2004; 19:12.[accessed 23.10.06]
- 476. Arora A., Hakim I., Baxter J., et al: Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjects. *Proc Natl Acad Sci U S A* 2007; 104:4255-4260.
- 477. Dickinson B.L., Clements J.D.: Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. *Infect Immun* 1995; 63:1617-1623.
- 478. Williams N.A., Hirst T.R., Nashar T.O.: Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. *Immunol Today* 1999; 20:95-101.

- 479. Freytag L.C., Clements J.D.: Bacterial toxins as mucosal adjuvants. Curr Top Microbiol Immunol 1999; 236:215-236.
- 480. Salmond R.J., Luross J.A., Williams N.A.: Immune modulation by the cholera-like enterotoxins. Expert Rev Mol Med 2002; 4:1-16.
- 481. Plant A., Williams N.A.: Modulation of the immune response by the cholera-like enterotoxins. *Curr Top Med Chem* 2004; 4:509-519.
- 482. Holmgren J., Adamsson J., Anjuere F., et al: Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. *Immunol Lett* 2005; 97:181-188.
- 483. Arrington J., Braun R.P., Dong L., et al: Plasmid vectors encoding cholera toxin or the heat-labile enterotoxin from Escherichia coli are strong adjuvants for DNA vaccines. *J Virol* 2002; 76:4536-4546.
- 484. Mkrtichyan M., Ghochikyan A., Movsesyan N., et al: Immunostimulant adjuvant patch enhances humoral and cellular immune responses to DNA immunization. *DNA Cell Biol* 2008; 27:19-24.
- 485. Ding Z., Bal S.M., Romeijn S., et al: Transcutaneous immunization studies in mice using diphtheria toxoid-loaded vesicle formulations and a microneedle array. *Pharm Res* 2011; 28:145-158.
- 486. Rappuoli R., Pizza M., Douce G., et al: Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. *Immunol Today* 1999; 20:493-500.
- 487. Pizza M., Giuliani M.M., Fontana M.R., et al: Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. *Vaccine* 2001; 19:2534-2541.
- 488. Peppoloni S., Ruggiero P., Contorni M., et al: Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. *Expert Rev Vaccines* 2003; 2:285-293.
- Gupta P.N., Mishra V., Singh P., et al: Tetanus toxoid-loaded transfersomes for topical immunization. J Pharm Pharmacol 2005; 57:295-301.
- 490. D'Antonio N.F., D'Antonio L.F., Wagner J.T.: *Hypodermic fluid dispenser*. (US Patent no. 6,056,716)Washington, DC, US Patent and Trademark Office, May 2, 2000. issued
- 491. Sadowski P.L., DeBoer D.M., Berman C.L., et al: *Needle assisted jet injector*. (US Patent no. 6,746,429)Washington, DC, US Patent and Trademark Office, June 8, 2004. issued
- 492. Hingson R.A., Figge F.H.J.: A survey of the development of jet injection in parenteral therapy. *Curr Res Anesth Analg* 1952; 31:361-366.
- 493. Vorob'ev A.A., Nekrasov I.L., Bandakov L.F.: Bezygol'nyi sposob vvedeniia biologicheskikh preparatov v organizm [Russian] [Needle-free method for the introduction of biological preparations into organisms]. Moscow: Meditsina; 1972:1-102.
- 494. Reis E.C., Jacobson R.M., Tarbell S., et al: Taking the sting out of shots: control of vaccination-associated pain and adverse reactions. *Pediatr Ann* 1998; 27:375-386.
- 495. Pass F., Hayes J.: Needle-free drug delivery. In: Rathbone M.J., Hadgraft J., Roberts M.S., ed. Modified-Release Drug Delivery Technology, New York: Marcel Dekker; 2003:599-606.
- 496. Mitragotri S.: Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 2006; 5:543-548.
- 497. Centers for Disease Control and Prevention: *Needle-free injection technology*. May 20, 2007. Archived[accessed 06.03.12] web.archive.org/web/20070520070259/www.cdc.gov/nip/dev/jetinject.htm
- 498. Ziegler A.S.: Spritzen ohne nadel: science-fiction oder renaissance einer totgeglaubten arzneiform? [Needle-free injection: science fiction or comeback of an almost forgotten drug delivery system?]. *Med Monatsschr Pharm* 2007; 30:297-303.
- 499. Panchal A., Shah V., Upadhyay U.M.: Insulin drug delivery systems: a review. Int J Res Pharm Sci 2011; 2:484-492.
- 500. Activa Brand Products. Mississauga, Ontario, Canada (successor to Equipement Moniteur, Inc. and Advanced Medical Technologies Inc., Canada). www.advantajet.com
- 501. American Jet Injector. Lansdale, PA (the Am-O-Jet is an exact design of the out-of-patent Ped-O-Jet device).
- 502. Avant Medical Corporation. San Diego, CA. web.archive.org/web/20081208210918/http://avantmedical.com/
- 503. Merial Groupe, Sanofi-Aventis. Lyon, France (Vetjet use under license from Bioject, Inc.). web.archive.org/web/20110515204309/http://purevax.us.merial.com/, http://purevax.us.merial.com/media/Instructional 256k.wmv
- 504. Chemical Automatics [Khimavtomatika] Design Bureau (CADB), Voronezh, Russia. www.chimavtomatika.ru/ (technology developed initially at All-Union Scientific Research Institute of Surgical Equipment and Tools -VNIIKHAI; some technology licensed since 2000 to Felton International).
- 505. EMS Electro Medical Systems. Nyon, Switzerland. (EMS/MPM device from EMS Medical GmbH, 8462 Konstanz, Germany.) www.ems-medical.com
- 506. EuroJet Medical Kft. Budapest, Hungary. www.ejm.hu
- 507. Genesis Medical Technologies, Inc. (predecessor company to PharmaJet), Golden, CO. www.geocities.com/genmedtech.
- 508. H. Galante et Co. Paris, France. See ref. 523.
- 509. Heng Yang Weida Science Technology. Heng Yang, Hunan, China.
- 510. Bespak, a division of Consort Medical plc, which acquired The Medical House plc in 2009, www.bespak.com
- 511. Microbiological Research Establishment (now the Defence Science and Technology Laboratory), Ministry of Defense. Porton Down, Salisbury, Wiltshire. www.dstl.gov.uk
- 512. Nidec Tosok Corp. (formerly manufactured by Tokyo Sokuhan Co., Ltd.). Zama-City, Kanagawa, Japan. www.nidectosok.co.jp/english/index.html

- 513. PenJet Inc. Beverly Hills, CA. www.penjet.com
- 514. Prolitec, SA (Projection Liquide Technologies) (formerly Béarn Mécanique Aviation SA, Billère, France), Aouste sur Sye, France.
- 515. Schuco International Limited. London, UK. www.schuco.co.uk
- 516. Shimadzu Corp. Nakagyo-ku, Kyoto, Japan. www.shimadzu.com
- 517. SICIM, Medical Jet s.r.l. Romans d'Isonzo, GO, Italy. www.medicaljet.it/sicim
- 518. Société AKRA. Pau, France. www.dermojet.com
- 519. Z. & W. Manufacturing Co. Wickliffe, OH (acquired in 1965 by Parker Hanifin Corporation; www.parker.com); marketed by Scientific Equipment Manufacturing Corporation (SEMCO), Larchmont, NY.
- 520. EMD Serono, Inc., Rockland, MA, USA, an affiliate of Merck KGaA, Darmstadt, Germany, www.emdserono.com
- 521. Merial Limited. Duluth, GA. purevax.us.merial.com.
- 522. Guérard A.: Présentation, au nom de M. Mathieu, d'un appareil dit à douches filiformes, Séance du 2 mai 1865, Présidence de M. Bouchardat, Vice-Président. *Bull Acad Impériale Méd (France)* 1865; 30:676-677.
- 523. Béclard F.: Présentation de l'injecteur de Galante, Séance du 18 décembre 1866, Présidence de M. Bouchardat. *Bull Acad Impériale Méd (France)* 1866; 32:321-327.
- 524. Lockhart M.L.: *Hypodermic Injector*. (US Patent no. 2,322,244)Washington, DC, US Patent and Trademark Office, June 22, 1943. issued
- 525. Hingson R.A., Hughes J.G.: Clinical studies with jet injection: a new method of drug administration. *Curr Res Anesth Analg* 1947; 26:221-230.
- 526. Perkin F.S., Todd G.M., Brown T.M., et al: Jet injection of insulin in treatment of diabetes mellitus. *Proc Am Diabetes Assoc* 1950; 10:185-199.
- 527. Robert P. Scherer Corporation, renamed in 1947 from a company founded in Detroit, MI, USA, in 1933. Was absorbed in 1998 into Cardinal Health, which became Catalent Pharma Solutions, Somerset, NJ, USA.
- 528. Warren J., Ziherl F.A., Kish A.W., et al: Large-scale administration of vaccines by means of an automatic jet injection syringe. *JAMA* 1955; 157:633-637.
- 529. Benenson A.S.: Mass immunization by jet injection. Proceedings of the International Symposium of Immunology, Opatija, Yugoslavia, 28 September-1 October 1959 (International Committee for Microbiological Standardization, Section of the International Association of Microbiological Societies), Zagreb: Tiskara Izdavackog zavoda Jugoslavenske akademije; 1959:393-399.[Library of Congress QW 504 160p 1959]
- 530. Hingson R.A., Davis H.S., Rosen M.: The historical development of jet injection and envisioned uses in mass immunization and mass therapy based upon two decades' experience. *Mil Med* 1963; 128:516-524.
- 531. Hingson R.A., Davis H.S., Rosen M.: Clinical experience with one and a half million jet injections in parenteral therapy and in preventive medicine. *Mil Med* 1963; 128:525-528.
- 532. Neufeld P.D., Katz L.: Comparative evaluation of three jet injectors for mass immunization. Can J Public Health 1977; 68:513-516.
- 533. Barclay E.M., Hingson R.A., Abram L.E., et al: Mass vaccination against smallpox in Liberia. *The Bulletin (Acad Med Cleveland)* 1962; 47(Suppl. 8):16-23.
- 534. Meyer H.M., Hostetler D.D., Bernheim B.C., et al: Response of Volta children to jet inoculation of combined live measles, smallpox and yellow fever vaccines. *Bull World Health Organ* 1964; 30:783-794.
- 535. Kalabus F., Sansarricq H., Lambin P., et al: Standardization and mass application of combined live measles-smallpox vaccine in Upper Volta. *Am J Epidemiol* 1967; 86:93-111.
- 536. Millar J.D., Foege W.H.: Status of smallpox eradication (and measles control) in West and Central Africa. *J Infect Dis* 1969; 120:725-732.
- 537. Millar J.D., Morris L., Macedo-Filho A., et al: The introduction of jet injection mass vaccination into the national smallpox eradication program of Brazil. *Trop Geogr Med* 1971; 23:89-101.
- 538. Ruben F.L., Smith E.A., Foster S.O., et al: Simultaneous administration of smallpox, measles, yellow fever, and diphtheria-pertussistetanus antigens to Nigerian children. *Bull World Health Organ* 1973; 48:175-181.
- 539. Meyer Jr H.M.: Mass vaccination against measles in Upper Volta. Arch Gesamte Virusforsch 1965; 16:243-245.
- 540. Hendrickse R.G., Montefiore D., Peradze T., et al: Measles vaccination: report of large scale trial of further attenuated measles vaccine in Nigeria. *J Trop Med Hyg* 1966; 69:112-116.
- 541. de Quadros C.A., Hersh B.S., Nogueira A.C., et al: Measles eradication: experience in the Americas. *Bull World Health Organ* 1998; 76(Suppl. 2):47-52.
- 542. Hingson R.A., Davis H.S., Bloomfield R.A., et al: Mass inoculation of the Salk polio vaccine with the multiple dose jet injector. *GP* [General Practitioner] 1957; 15:94-96.
- 543. Mohammed I., Obineche E.N., Onyemelukwe G.C., et al: Control of epidemic meningococcal meningitis by mass vaccination, I: further epidemiological evaluation of groups A and C vaccines in northern Nigeria. *J Infect* 1984; 9:190-196.
- 544. Spiegel A., Greindl Y., Lippeveld T., et al: Effet de deux stratégies de vaccination sur l'évolution de l'épidémie de méningite à méningocoque A survenue à N'Djamena (Tchad) en 1988. *Bull World Health Organ* 1993; 71:311-315.
- 545. Spiegel A., Moren A., Varaine F., et al: Aspects épidémiologiques et contrôle des épidémies de méningite à méningocoque en Afrique. *Cahiers Santé* 1994; 4:231-236.

- 546. Anderson E.A., Lindberg R.B., Hunter D.H.: Report of large-scale field trial of jet injection in immunization for influenza. *JAMA* 1958; 167:549-552.
- 547. Ivannikov I.u.G., Efimenko I.B., Marinich I.G., et al: Otsenka effektivnosti massovoi profilaktiki grippa s ispol'zovaniem inaktivirovannoi khromatograficheskoi vaktsiny v Leningrade. *Zh Mikrobiol Epidemiol Immunobiol* 1980; 11:18-27.[Evaluation of mass influenza prevention effectiveness using an inactivated chromatographic vaccine in Leningrad]
- 548. Meyer Jr H.M.: Field experience with combined live measles, smallpox and yellow fever vaccines. *Arch Gesamte Virusforsch* 1965; 16:365-366.
- 549. Artus J.C.: Vaccination de masse par le vaccin souche Rockefeller 17 D au Sénégal. Utilisation des "Ped-o-Jet". *Méd Trop* 1966; 26:527-536.
- 550. Towle R.L.: New horizon in mass inoculation. Public Health Rep. 1960; 75:471-476.
- 551. Barrett C.D.: Automated multiple immunization against diphtheria, tetanus and poliomyelitis. J Sch Health 1962; 32:48-50.
- 552. Veronesi R., S'alles Gomes L.F., Soares M.A., et al: Importancia do 'jet-injector' (injeção sem agulha) em planos de imunização em massa no Brasil: resultados com as vacinas antitetânica e antivariolica. *Rev Hosp Clin Fac Med São Paulo* 1966; 21:92-95.
- 553. Rey M., Triau R., Diop Mar I., et al: *Single shot tetanus immunization and its application to mass campaign*. Washington, DC: Pan American Health Organization; 1972:94-101. Scientific Publication no. 253
- 554. Rey M., Diop Mar I., Gbezo P., et al: Vaccination de masse antitétanique en Afrique. Nouv Presse Méd (France) 1973; 2:514.
- 555. Schonberger L.B., Bregman D.J., Sullivan-Bolyai Z., et al: Guillain-Barré syndrome following vaccination in the national influenza immunization program, United States, 1976–1977. *Am J Epidemiol* 1979; 110:105-123.
- 556. Ehrengut W., Allerdist H., Erdmann G.: Clinical reactions to an adsorbed killed trivalent influenza vaccine (including A/New Jersey 8/76 antigen) with different immunization methods. *Dev Biol Stand* 1977; 39:283-287.
- 557. Munshi A.K., Hegde A., Bashir N.: Clinical evaluation of the efficacy of anesthesia and patient preference using the needle-less jet syringe in a pediatric dental practice. *J Clin Pediatr Dent* 2001; 25:131-136.
- 558. Jimenez N., Bradford H., Seidel K.D., et al: A comparison of a needle-free injection system for local anesthesia versus EMLA for intravenous catheter insertion in the pediatric patient. *Anesth Analg* 2006; 102:411-414.
- 559. Greenberg R.S., Maxwell L.G., Zahurak M.S., et al: Preanesthetic medication of children with midazolam using the Biojector jet injector. *Anesthesiology* 1995; 83:264-269.
- 560. Zsigmond E.K., Kovacs V., Fekete G.: A new route, jet injection for anesthetic induction in children, I: midazolam dose-range finding studies. *Int J Clin Pharmacol Ther* 1995; 33:580-584.
- 561. Peng Y., Masson P., Li P.S., et al: No-needle local anesthesia for adult male circumcision. J Urol 2010; 184:978-983.
- 562. Hingson R.A., Easley E.J., Gray A.L., et al: Hypospray administration of penicillin in the treatment of gonorrhea. *J Vener Dis Inf* 1948; 29:61-63.
- 563. Hirsh H.L., Welch H., Milloff B., et al: Administration of penicillin and streptomycin by means of the Hypospray apparatus (jet injection); absorption, toxicity, and stability. *J Lab Clin Med* 1948; 33:805-810.
- 564. Black J., Nagle C.J., Strachan C.H.L.: Prophylactic low-dose heparin by jet injection. Br Med J 1978; 2:95.
- 565. Baer C.H., Bennett W.M., Folwick D.A., et al: Effectiveness of a jet injection system in administering morphine and heparin to healthy adults. *Am J Crit Care* 1996; 5:42-48.
- Harris M., Joy R., Larsen G., et al: Enfuvirtide plasma levels and injection site reactions using a needle-free gas-powered injection system (Biojector). *AIDS* 2006; 20:719-723.
- 567. Gottlieb M., Thommes J.A., Barker D., et al: Safety, tolerability and pharmacokinetics of enfuvirtide administered by a needle-free injection system compared with subcutaneous injection. *Antivir Ther* 2008; 13:723-727.
- 568. Clarke A.K., Woodland J.: Comparison of two steroid preparations used to treat tennis elbow, using the Hypospray. *Rheumatol Rehabil* 1975; 14:47-49.
- 569. Martins J.K., Roedl E.A.: Medijector: a new method of corticosteroid-anesthetic delivery. J Occup Med 1979; 21:821-824.
- 570. Lawton R.L.: Jet injection of drugs into malignant neoplasms. Cancer Chemother Rep 1964; 37:57-58.
- 571. Brodell R.T., Bredle D.L.: The treatment of palmar and plantar warts using natural alpha interferon and a needleless injector. *Dermatol Surg* 1995; 21:213-218.
- 572. Bremseth D.L., Pass F.: Delivery of insulin by jet injection: recent observations. Diabetes Technol Ther 2001; 3:225-232.
- 573. Resman Z., Metelko Z., Skrabalo Z.: The application of insulin using the jet injector DG-77. Acta Diabetol Lat 1985; 22:119-125.
- Welty T.K., Josimovich J.B., Gerende J.H., et al: Reduction of variability in the anovulatory period following medroxyprogesterone acetate injection by using jet injectors. *Fertil Steril* 1970; 21:673-682.
- 575. Bareille P., MacSwiney M., Albanese A., et al: Growth hormone treatment without a needle using the Preci-Jet 50 transjector. *Arch Dis Childhood (London)* 1997; 76:65-67.
- 576. Dörr H.G., Zabransky S., Keller E., et al: Are needle-free injections a useful alternative for growth hormone therapy in children? safety and pharmacokinetics of growth hormone delivered by a new needle-free injection device compared to a fine gauge needle. *J Pediatr Endocrinol Metab* 2003; 16:383-392.
- 577. Kutscher A.H., Hyman G.A., Zegarelli E.V., et al: A comparative evaluation of the jet injection technique (Hypospray) and the hypodermic needle for the parenteral administration of drugs: a controlled study. *Am J Med Sci* 1962; 54:418-420.
- 578. Chase C.C.L., Daniels C.S., Garcia R., et al: Needle-free injection technology in swine: progress toward vaccine efficacy and pork quality. *J Swine Health Prod* 2008; 16:254-261.

- 579. Velez ID (principal investigator), et al. Safety and immunogenicity study to assess DENVax, a live attenuated tetravalent vaccine for prevention of dengue fever. http://clinicaltrials.gov/ct2/show/NCT01224639. Identifier: NCT01224639.
- 580. George S (principal investigator), et al. Tetravalent chimeric dengue vaccine trial. http://clinicaltrials.gov/ct2/show/NCT01110551. Identifier: NCT01110551.
- 581. Beckett C.G., Tjaden J., Burgess T., et al: Evaluation of a prototype dengue-1 DNA vaccine in a phase 1 clinical trial. *Vaccine* 2011; 29:960-968.
- 582. Cattamanchi A., Posavad C., Wald A., et al: Phase I study of a herpes simplex virus type 2 (HSV-2) DNA vaccine administered to healthy, HSV-2-seronegative adults by a needle-free injection system. *Clin Vaccine Immunol* 2008; 15:1638-1643.
- 583. Jaoko W., Karita E., Kayitenkore K., et al: Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. *PLoS ONE* 2010; 5:e12873.
- 584. Bråve A., Gudmundsdotter L., Sandström E., et al: Biodistribution, persistence and lack of integration of a multigene HIV vaccine delivered by needle-free intradermal injection and electroporation. *Vaccine* 2010; 28:8203-8209.
- 585. Imoto J.-I., Ishikawa T., Yamanaka A., et al: Needle-free jet injection of small doses of Japanese encephalitis DNA and inactivated vaccine mixture induces neutralizing antibodies in miniature pigs and protects against fetal death and mummification in pregnant sows. *Vaccine* 2010; 28:7373-7380.
- 586. Ginsberg B.A., Gallardo H.F., Rasalan T.S., et al: Immunologic response to xenogeneic gp100 DNA in melanoma patients: comparison of particle-mediated epidermal delivery with intramuscular injection. *Clin Cancer Res* 2010; 16:4057-4065.
- 587. US Department of Labor, Occupational Safety and Health Administration. Bloodborne pathogens and needlestick prevention. www.osha.gov/SLTC/bloodbornepathogens; [accessed 12.12.11].
- 588. Dubin C.H.: Healthcare reform and needlestick prevention laws inject life into hand-held devices. *Drug Deliv Technol* 2009; 9:48-56.[accessed 11.12.11]
- 589. Ekwueme D.U., Weniger B.G., Chen R.T.: Model-based estimates of risks of disease transmission and economic costs of seven injection devices in sub-Saharan Africa. *Bull World Health Organ* 2002; 80:859-870.
- 590. Griffiths U.K., Santos A.C., Nundy N., et al: Incremental costs of introducing jet injection technology for delivery of routine childhood vaccinations: Comparative analysis from Brazil, India, and South Africa. *Vaccine* 2011; 29:969-975.
- 591. World Health Organization: "First, do no harm": introducing auto-disable syringes and ensuring injection safety in immunization systems of developing countries. Geneva, Switzerland, World Health Organization, Department of Protection of the Human Environment and Department of Vaccines and Biologicals, 2002. Document WHO/V&B/02.26 [accessed 12.12.11] http://whqlibdoc.who.int/hq/2002/WHO_V&B_02.26.pdf
- 592. Levin A, Fang A, Hasen PM, et al. A global health partnership's use of time-limited support to catalyze health practice change: the case of GAVI's injection safety support. PLoS ONE 5:e 12986. http://dx.doi.org/10.1371/journal.pone.0012986.
- 593. Shergold O.A., Fleck N.A., King T.S.: The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection. *J Biomech* 2006; 39:2593-2602.
- 594. Crossject S.A. Paris, France. www.crossject.com
- 595. PyroFast. PATEV GmbH & Co KG. Karlsruhe, Germany. www.yet2.com/app/insight/techofweek/53072?sid=350www.patev.de
- 595a. Taberner A., Hogan N.C.: *Hunter IW. Needle-free jet injection using real-time controlled linear Lorentz-force actuators*, 2012. Med Engin Physics 2012;34(9): 1228-1235 [accessed 04-06-12] http://dx.doi.org/10.1016/j.medengphy.2011.12.010
- 596. Hemond B.D., Taberner A., Hogan C., et al: Development and performance of a controllable autoloading needle-free jet injector. *J Med Devices* 2011; 5:015001.
- 597. Schramm J., Mitragotri S.: Transdermal drug delivery by jet injectors: energetics of jet formation and penetration. *Pharm Res* 2002; 19:1673-1679.
- 598. Coon W., Hodgson P., Hinerman D.L.: Fundamental problems in jet injection. Am J Med Sci 1954; 227:39-45.
- 599. Figge F.H.J., Barnett D.J.: Anatomic evaluation of a jet injection instrument designed to minimize pain and inconvenience of parenteral therapy. *Am Pract* 1948; 3:197-206.
- 600. Weller C., Linder M.: Jet injection of insulin vs. the syringe-and-needle method. JAMA 1966; 195:156-159.
- 601. Garbsch H., Pietschmann H.: Rontgenologische Darstellung der Gelenks- und Weichteilinfiltration mit dem "Hypospray Jet Injector". Z Rheumaforsch 1966; 25:237-242.
- 602. White W.G.: Porton Jet injector. Br Med J 1969; 3:472-473.
- 603. Bennett C.R., Mundell R.D., Monheim L.M.: Studies on tissue penetration characteristics produced by jet injection. *J Am Dent Assoc* 1971; 83:625-629.
- 604. Partsch C.-J., von Büren E., Kühn B., et al: Visualization of injection depot after subcutaneous administration by syringe and needle-free device (Medi-Jector): first results with magnetic resonance imaging. *Eur J Pediatr* 1997; 156:893-898.
- 605. Hughes J.G., Jordan R.G., Hill F.S.: Jet injection in pediatric practice. *Pediatrics* 1949; 3:801-811.
- 606. Schramm-Baxter J., Mitragotri S.: Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. *J Control Release* 2004; 97:527-535.
- Mizzy Division (SyriJet), Keystone Industries. Cherry Hill, NJ. web.archive.org/web/20110128211829/http://syrijetinc.com/public/index.html
- 608. MADA, Inc. Carlstadt, NJ. www.madainternational.com; web.archive.org/web/20100927105050/http://www.madainternational.com/us/prod11 us.html

- 609. Keystone Industries (Ped-O-Jet International). Cherry Hill, NJ. www.keystoneind.com. Ped-O-Jet previously manufactured by Scientific Equipment Manufacturing Corp. (SEMCO), Lodi, NJ, and Larchmont, NY, and developed by Medicinal Equipment Development Laboratory, US Army, Fort Totten, NY. See ref. 529.
- 610. Med-E-Jet D (dba Donald J. Kuch). Olmsted Falls, OH.
- 611. Cartier R., Ren S.V., Walther W., et al: In vivo gene transfer by low-volume jet injection. Anal Biochem 2000; 282:262-265.
- 612. Jackson J., Dworkin R., Tsai T., et al: Comparison of antibody response and patient tolerance of yellow fever vaccine administered by the Biojector needle-free injection system versus conventional needle/syringe injection. Third International Conference on Travel Medicine, vol. 264. 25–29 April 1993:209.Paris
- 613. LectraJet. East Syracuse, NY: D'Antonio Consultants International, Inc. www.dantonioconsultants.com
- 614. Bioject, Inc.: Guide to selection and use of Biojector syringes. Portland, OR, Bioject, Inc, 1997. Document 171-0134-00 Rev C 5/97
- 615. Cockshott W.P., Thompson G.T., Howlett L.J., et al: Intramuscular or intralipomatous injections?. N Engl J Med 1982; 307:356-358.
- 616. Poland G.A., Borrud A., Jacobson R.M., et al: Determination of deltoid fat pad thickness. Implications for needle length in adult immunization. *JAMA* 1997; 277:1709-1711.
- 617. Provotorov V.M., Perel'man M.I., Strel'tsov V.P., et al: Lechenie zabolevanii legkikh vnutrilegochnym ugol'no-struinym vvedeniem lekarstvennykh veshchestv [Treatment of lung diseases by intrapulmonary jet injection of drugs]. *Klin Med (Moscow)* 1991; 69:48-51
- 618. Chambon L., Barme M., Tommasi U-B, et al: Étude de l'utilisation d'un injecteur sans aiguille pour la vaccination B.C.G. intradermique. *Méd Trop (Mars)* 1970; 30:809-828.
- 619. British Thoracic and Tuberculosis Association : A comparison of intradermal BCG vaccination by jet injection and by syringe and needle: a report from the Research Committee of the British Thoracic and Tuberculosis Association. *Tubercle* 1971; 52:155-165.
- 620. Carnus H.: Ped-o-jet et viabilité du BCG. Méd Trop (Mars) 1973; 33:20-23.
- 621. Carnus H.: Influence du Ped-o-jet sur la viabilité du vaccin BCG intradermique lyophilisé: étude au laboratoire. *Bull World Health Organ* 1974; 51:101-102.
- 622. Parker V.: Jet gun or syringe? a trial of alternative methods of BCG vaccination. Public Health 1984; 98:315-320.
- 623. Paul S.S., Nath K.R., Chhabra A.K., et al: Comparison of BCG inoculation by conventional intradermal and jet methods. *Indian Pediatr* 1978; 15:341-347.
- 624. Cockburn T.A., Witt M.T., Ludlow C.E., et al: A comparison of jet injection with the Mantoux test in mass skin testing with tuberculin. *Am Rev Respir Dis* 1965; 92:982-985.
- 625. Hendrix C., Nichols C., Hirsh L.: A new method of administering the tuberculin skin test. Am J Public Health 1966; 56:818-820.
- 626. De Partearroyo R., Ruiz Benítez G.: Consideraciones sobre el tuberculino-diagnóstico: estudio comparativo del Mantoux y la jeringuilla Dermo-Jet. *Rev Clin Esp (Spain)* 1966; 100:119-125.
- 627. Bettag O.L., Hall C.: Mantoux tuberculin testing: standard method vs. jet injection. Dis Chest 1967; 51:530-536.
- 628. Morse D.C., Hall A., Kaluzny A., et al: Comparative tuberculin testing: intradermal gun versus intradermal needle. *Am Rev Respir Dis* 1967; 96:107-110.
- 629. Dull H.B., Herring L.L., Calafiore D., et al: Jet injector tuberculin skin testing: methodology and results. *Am Rev Respir Dis* 1968; 97:38-45.
- 630. Luby J.P., Kaiser R.L., Herring L.L., et al: Jet injector tuberculin skin testing: a comparative evaluation: quantitative aspects. *Am Rev Respir Dis* 1968; 97:46-53.
- 631. Marsallon Magnin, Jego: Intradermo-réaction tuberculinique et vaccination B.C.G. intradermique par injecteur à jet sous pression. Rev Corps Santé Armées Terre Mer Air 1972; 13:57-61.
- 632. Brólio R., Veronesi R., Mazza C.C., et al: Viabilidade da aplicação do teste tuberculínico com o Dermo-jet. *Rev Saúde Publica* 1976; 10:219-226.
- 633. Wijsmuller G., Snider D.E.: Skin testing: a comparison of the jet injector with the mantoux method. *Am Rev Respir Dis* 1975; 112:789-798.
- 634. ten Dam H.G.: Jet-injectors in BCG vaccination. Clin Pediatr (Bologna) 1971; 10:4-5.
- 635. Milstien J.: *The immunological basis for immunization. Series module 5: Tuberculosis*, Geneva: World Health Organization, Global Programme for Vaccines and Immunization, Expanded Programme on Immunization; 1993:15-20.Document WHO/EPI/GEN/93
- 636. Meyer H.M., Bernheim B.C., Rogers N.G.: Titration of live measles and smallpox vaccines by jet inoculation of susceptible children. Proc Soc Exp Biol Med 1965; 118:53-57.
- 637. Zsigmond E.K., Darby P., Koenig H.M., et al: Painless intravenous catheterization by intradermal jet injection of lidocaine: a randomized trial. *J Clin Anesth* 1999; 11:87-94.
- 638. Epstein J.E., Gorak E.J., Charoenvit Y., et al: Safety, tolerability, and lack of antibody responses after administration of a PfCSP DNA malaria vaccine via needle or needle-free jet injection, and comparison of intramuscular and combination intramuscular/intradermal routes. *Hum Gene Ther* 2002; 13:1551-1560.
- 639. Bråve A., Ljungberg K., Boberg A., et al: Multigene/multisubtype HIV-1 vaccine induces potent cellular and humoral immune responses by needle-free intradermal delivery. *Mol Ther* 2005; 12:1197-1205.
- 640. Wang R., Epstein J., Baraceros F.M., et al: Induction of CD4+ T cell-dependent CD8+ type 1 responses in humans by a malaria DNA vaccine. *Proc Natl Acad Sci U S A* 2001; 98:10817-10822.

- 641. Perlman D, Copeland K, McAllister L. A rabies vaccine trial utilizing two versions of a needle-free jet injection device versus standard needle and syringe: safety and efficacy. World Vaccine Congress, Washington, DC, USA (Terrapinn), 10-13 April 2012 [poster presentation].
- 642. Weniger BG (principal investigator), et al. Needle-free jet injection of reduced-dose, intradermal, influenza vaccine in ≥ 6 to < 24-month-old children. http://clinicaltrials.gov/ct2/show/NCT00386542
- 643. Pilipenko V.G., Miroshnichenko M.A., Loktev N.A.: Immunizatsiia assotsiirovannymi di- i trivaktsinami protiv chumy, tuliaremii i sibirskoi iazvy pri pomoshchi bezygol'nogo in'ektora. Soobschenie I [Russian] [Plague, tularemia and anthrax immunization with associated di- and trivaccines using a jet injector. I]. *Zh Mikrobiol Epidemiol Immunobiol* 1974; 00:59-64.
- 644. Loktev N.A., Pilipenko V.G., Basilova G.I., et al: Bezygol'naia immunizatsiia assotsiirovannoi vaktsinoi protiv chumy, tuliaremii i sibirskoi iazvy [Russian] [Jet immunization with polyvalent vaccine against plague, tularemia, and anthrax]. *Zh Mikrobiol Epidemiol Immunobiol* 1980; 6:109-110.
- 645. Burgasov P.N., Cherkasskii B.L., Adilov D.A., et al: Immunization against anthrax by a needleless method [in Russian]. *Zh Mikrobiol Epidemiol Immunobiol* 1973; 50:23-26.
- 646. Saltykov R.A., Nekrasov I.L., Lesniak O.T., et al: Experimental immunization with live anthrax STI vaccine using a needleless injector [in Russian]. *Zh Mikrobiol Epidemiol Immunobiol* 1971; 48:52-55.
- 647. Diop Mar I., Sarrat H., Robin Y., et al: Vaccination anticholérique par voie intradermique au Pedojet. Réponse clinique et immunologique (d'après une expérience sénégalaise). *Bull Soc Pathol Exot Filiales* 1971; 64:663-672.
- 648. Parent du Châtelet I., Lang J., Schlumberger M., et al: Clinical immunogenicity and tolerance studies of liquid vaccines delivered by jet-injector and a new single-use cartridge (Imule): comparison with standard syringe injection. *Vaccine* 1997; 15:449-458.
- 649. Hoke Jr C.H., Egan J.E., Sjogren M.H., et al: Administration of hepatitis A vaccine to a military population by needle and jet injector and with hepatitis B vaccine. *J Infect Dis* 1995; 171(Suppl. 1):S53-S60.
- 650. Fisch A., Cadilhac P., Vidor E., et al: Immunogenicity and safety of a new inactivated hepatitis A vaccine: a clinical trial with comparison of administration route. *Vaccine* 1996; 14:1132-1136.
- 651. Williams J., Fox-Leyva L., Christensen C., et al: Hepatitis A vaccine administration: comparison between jet-injector and needle injection. *Vaccine* 2000; 18:1939-1943.
- 652. Lemon S.M., Scott R.M., Bancroft W.H.: Subcutaneous administration of inactivated hepatitis B vaccine by automatic jet injection. *J Med Virol* 1983; 12:129-136.
- 653. Matheï C., Van Damme P., Meheus A.: Hepatitis B vaccine administration: comparison between jet-gun and syringe and needle. *Vaccine* 1997; 15:402-404.
- 654. Simon J.K., Carter M., Pasetti M.F., et al: Safety, tolerability, and immunogenicity of inactivated trivalent seasonal influenza vaccine administered with a needle-free disposable-syringe jet-injector. *Vaccine* 2011; 29:9544-9550.
- 655. Vibes J.: Efficacité comparée de deux techniques de vaccination contre la grippe: taux sérologique obtenus après administration du vaccine par le Porton Jet et la seringue. *Méd Mal Infect* 1971; 1:343-348.
- 656. Payler D.K., Skirrow M.B.: Intradermal influenza vaccination. *Br Med J* 1974; 2:727.
- 657. McIntosh K., Orr I., Andersen M., et al: Response of normal children to influenza A/New Jersey/76 virus vaccine administered by jet injector. *J Infect Dis* 1977; 136(Suppl):S584-S587.
- 658. Jackson L.A., Austin G., Chen R.T., et al: Safety and immunogenicity of varying doses of trivalent inactivated influenza vaccine administered by needle-free jet injectors. *Vaccine* 2001; 19:4703-4709.
- 659. Lipson M.J., Carver D.H., Eleff M.G., et al: Antibody response to poliomyelitis vaccine administered by jet injection. *Am J Public Health* 1958; 48:599-603.
- 660. Schlumberger M., Parent du Châtelet I., Lafarge H., et al: Coût de l'injection d'anatoxine tétanique par injecteur sans aiguille (Imule) lors d'une vaccination collective au Senegal: comparaison avec l'injection par seringues et aiguilles restérilisables. Santé 1999; 9:319-326
- 661. Rey M., Triau R.: Essais de primo-vaccination antitétanique en un temps avec une anatoxine concentrée inoculée par injecteurs sans aiguille (note préliminaire). *Bull Soc Méd Afr Noire Lang Fr* 1967; 12:230-239.
- 662. Edwards E.A., Johnson D.P., Pierce W.E., et al: Reactions and serologic responses to monovalent acetone-inactivated typhoid vaccine and heat-killed TAB when given by jet injection. *Bull World Health Organ* 1974; 51:501-505.
- 663. Budd M.A., Scholtens R.G., McGehee Jr R.F., et al: An evaluation of measles and smallpox vaccines simultaneously administered. Am J Public Health Nations Health 1967; 57:80-86.
- 664. Hendrickse R.G., Montefiore D.: Measles vaccination with reduced dosage. *Br Med J* 1968; 3:28-30.
- 665. Sarno M.J., Blase E., Galindo N., et al: Clinical immunogenicity of measles, mumps and rubella vaccine delivered by the Injex jet injector: comparison with standard syringe injection. *Pediatr Infect Dis J* 2000; 19:839-842.
- 666. Elisberg B.L., McCown J.M., Smadel J.E.: Vaccination against smallpox, II: jet injection of chorio-allantoic membrane vaccine. J Immunol 1956; 77:340-351.
- 667. Roberto R.R., Wulff H., Millar J.D.: Smallpox vaccination by intradermal jet injection, C: cutaneous and serological responses to primary vaccination in children. *Bull World Health Organ* 1969; 41:761-769.
- 668. Agafonov V.I., Beliakov V.D., Ishkil'din M.I., et al: Immunological effectiveness of immunization against smallpox and tularemia by the jet injection method [in Russian]. *Voen Med Zh* 1973.48-51.
- 669. Artenstein M.S., Branche Jr W.C., Zimmerly J.G., et al: Meningococcal infections, 3: studies of group A polysaccharide vaccines. *Bull World Health Organ* 1971; 45:283-286.

- 670. Gotschlich E.C., Rey M., Etienne J., et al: The immunological responses observed in field studies in Africa with group A meningococcal vaccines. *Prog Immunobiol Stand* 1972; 5:485-491.
- 671. Greenwood B.M., Wali S.S.: Control of meningococcal infection in the African meningitis belt by selective vaccination. *Lancet* 1980; 1:729-732.
- 672. Mohammed I., Zaruba K.: Control of epidemic meningococcal meningitis by mass vaccination. *Lancet* 1981; 2:80-83.
- 673. Binkin N., Band J.: Epidemic of meningococcal meningitis in Bamako, Mali: epidemiological features and analysis of vaccine efficacy. *Lancet* 1982; 2:315-318.
- 674. Rey J.L., Soubiran G., Fayet M.T., et al: Évaluation sérologique d'une campagne de vaccination antiméningococcique de masse au Niger. *Bull Soc Pathol Exot Filiales* 1989; 82:248-254.
- 675. Amato Neto V., Finger H., Gotschlich E.C., et al: Serologic response to serogroup C meningococcal vaccine in Brazilian preschool children. *Rev Inst Med Trop Sao Paulo* 1974; 16:149-153.
- 676. Taunay A.E., Galvao P.A., de Morais J.S., et al: Disease prevention by meningococcal serogroup C polysaccharide vaccine in preschool children: results after eleven months in Sao Paulo. *Brazil. Pediatr Res* 1974; 8:429.
- 677. Taunay A.E., Feldman R.A., Bastos C.O., et al: Avaliação do efeito protector de vacina polissacaridica antimeningococica da grupa C em crianças de 6 a 36 meses. *Rev Inst Adolfo Lutz* 1978; 32:77-82.
- 678. Rao S.S., Gomez P., Mascola J.R., et al: Comparative evaluation of three different intramuscular delivery methods for DNA immunization in a nonhuman primate animal model. *Vaccine* 2006; 24:367-373.
- 679. Carter E.W., Kerr D.E.: Optimization of DNA-based vaccination in cows using green fluorescent protein and protein A as a prelude to immunization against staphylococcal mastitis. *J Dairy Sci* 2003; 86:1177-1186.
- 680. Imoto J.-I., Konishi E.: Needle-free jet injection of a mixture of Japanese encephalitis DNA and protein vaccines: a strategy to effectively enhance immunogenicity of the DNA vaccine in a murine model. *Viral Immunol* 2005; 18:205-212.
- 681. Mumper R.J., Cui Z.: Genetic immunization by jet injection of targeted pDNA-coated nanoparticles. *Methods* 2003; 1:255-262.
- 682. Marshall J.L., Hoyer R.J., Toomey M.A., et al: Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. *J Clin Oncol* 2000; 18:3964-3973.
- 683. Evans L.S., Lewinsohn D.M., Johnson M., et al: Microsphere encapsulation or Biojector delivery enhances adjuvanted DNA vaccines in rhesus macaques. 19th Annual Symposium on Nonhuman Primate Models for AIDS, 8–11 September 2001, Monterey, CA; abstract #128. *J Med Primatol* 2002; 31:298.
- 684. Timmerman J.M., Singh G., Hermanson G., et al: Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. *Cancer Res* 2002; 62:5845-5852.
- 685. Lundholm P., Leandersson A.-C.a., Christensson B., et al: DNA mucosal HIV vaccine in humans. Virus Res 2002; 82:141-145.
- 686. Konishi E., Terazawa A., Fujii A.: Evidence for antigen production in muscles by dengue and Japanese encephalitis DNA vaccines and a relation to their immunogenicity in mice. *Vaccine* 2003; 21:3713-3720.
- 687. Hoke C.H., Binn L.N., Egan J.E., et al: Hepatitis A in the US Army: epidemiology and vaccine development. *Vaccine* 1992; 10(Suppl. 1):S75-S79.
- 688. Horn H., Opiz B., Schau G.: Investigations into the risk of infection by the use of jet injectors. *Health Soc Serv J* 1975; 85:2396-2397
- 689. Agafonov V.I., Bulatova T.I., Gamleshko KhP, et al: Effectiveness of comprehensive immunization with typhoid fever vaccine and polyanatoxin in combination with plague and small pox antigens [in Russian]. *Voen Med Zh* 1978; 10:51-54.
- 690. Agafonov V.I., Babkin E.I., Bulatova T.I., et al: Jet method of immunizing with associated adsorbed vaccines [in Russian]. *Voen Med Zh* 1974; 12:44-48.
- 691. Lenz T.R.: Foreign body granuloma caused by jet injection of tetanus toxoid. Rocky Mt Med J 1966; 63:48.
- 692. Schneider U., Birnbacher R., Schober E.: Painfulness of needle and jet injection in children with diabetes mellitus. *Eur J Pediatr* 1994; 153:409-410.
- 693. Kremer M.G.: Jet vaccination [letter]. Br Med J 1970; 4:303.
- 694. Eli Lilly Company: *Influenza Virus Vaccine Polyvalent (Types A and B)*, Indianapolis, IN: Eli Lilly and Company; December 28, 1962:102.[vaccine product insert; 03516, 80:12, PA 1787 AMP]
- 695. Salanga V.D., Hahn J.F.: Traumatic ulnar neuropathy from jet injection: Case Report. J Trauma 1979; 19:283-284.
- 696. Harris M., Larsen G., Valyi M., et al: Transient neuropathy after needle-free injection outside of recommended sites [letter]. *AIDS* 2006; 20:784-785.
- 697. Tabita P.V.: Side effect of the jet injector for the production of local anesthesia. Anesth Prog 1979.102-104.
- 698. Lee J.E., Choi H.Y., Lee J.S., et al: Posterior segment injury developed after injection of anesthetics on eyelids with needleless jet injection device. *Graefes Arch Clin Exp Ophthalmol* 2007; 245:173-175.
- 699. Rosenthal S.R.: Transference of blood by various inoculation devices. *Am Rev Respir Dis* 1967; 96:815-819.
- 700. Petersen N.J., Bond W.W., Carson L.A., Special Investigations Section, Hepatitis Laboratories Division: Informal quarterly report of October-December 1977. [memorandum] Phoenix, AZ: Department of Health, Education, and Welfare, Public Health Service, Center for Disease Control; 1977:1-3.

- Grabowsky M., Hadler S.C., Chen R.T., et al: Risk of transmission of hepatitis B virus or human immunodeficiency virus from jet injectors and from needles and syringes, Atlanta, GA, Centers for Disease Control and Prevention, 1994. Draft, 3 January. Unpublished manuscript
- 702. Darlow H.M.: Jet vaccination. *Br Med J* 1970; 4:554.
- 703. Abb J., Deinhardt F., Eisenberg J.: The risk of transmission of hepatitis B virus using jet injection in inoculation. *J Infect Dis* 1981; 144:176-179.
- 704. Spiess H.: Sterilität von Impfpistolen [letter]. [Sterility of vaccination guns.]. Dtsch Med Wochenschr 1975; 100:1445-1446.
- 705. Spiess H.: Hepatitisubertragung durch Hochdruckinjektion? [Letter]. [Hepatitis transmission by high pressure injection?]. *Dtsch Med Wochenschr* 1975; 100:2465.
- 706. Brink P.R.G., van Loon A.M., Trommelen J.C.M., et al: Virus transmission by subcutaneous jet injection. *J Med Microbiol* 1985; 20:393-397.
- 707. Centers for Disease Control: Hepatitis B associated with jet gun injection: California. MMWR Morb Mortal Wkly Rep 1986; 35:373-376.
- 708. World Health Organization: Expanded Programme on Immunization. Transmission of hepatitis B associated with jet gun injection. Wklv Epidemiol Rec. 1986; 61:309-311.
- 709. Canter J., Mackey K., Good L.S., et al: An outbreak of hepatitis B associated with jet injections in a weight reduction clinic. *Arch Intern Med* 1990; 150:1923-1927.
- 710. Zachoval R., Deinhardt F., Gurtler L., et al: Risk of virus transmission by jet injection. Lancet 1988; 1:189.
- 711. de Souza Brito G., Chen R.T., Stefano I.C., et al: *The risk of transmission of HIV and other blood-born diseases via jet injectors during immunization mass campaigns in Brazil.* 10th International Conference on AIDS, vol. 10. 7–12 August 1994:301. Yokohama, Japan; Abstract PC0132 [accessed 13.11.06] http://www.aegis.org/DisaplayConf/?Abstract=40593
- 712. Department of Defense: Issues of administration: jet injector use. In: Poland G.A., ed. Vaccines in the Military: A Department of Defense-wide Review of Vaccine Policy and Practice. A Report for the Armed Forces Epidemiological Board, August 1999, Falls Church, VA: Infectious Diseases Control Subcommittee of the Armed Forces Epidemiological Board; 1999:60.[accessed 14.11.11] web.archive.org/web/20060615065932/http://www.ha.osd.mil/afeb/reports/vaccines.pdf
- 713. Weintraub A.M., Ponce de Leon M.: Potential for cross-contamination from use of a needleless injector. *Am J Infect Control* 1998; 26:442-445.
- 714. Lukin E.P., Evstigneev V.I., Makhlai A.A., et al: Needle-free injections and "needle-transmitted" infections [in Russian]. *Voen Med Zh* 1997; 318:48-52.
- 715. Hoffman P.N., Abuknesha R.A., Andrews N.J., et al: A model to assess the infection potential of jet injectors used in mass immunisation. *Vaccine* 2001; 19:4020-4027.
- 716. Wenger J.D., Spika J.S., Smithwick R.W., et al: Outbreak of Mycobacterium chelonae infection associated with use of jet injectors. *JAMA* 1990; 264:373-376.
- 717. Souto F.J.D., Espírito Santo G.A., Philippi J.C., et al: Prevalância e fatores associados a marcadores do virus da hepatite B em população rural do Brasil central. *Rev Panam Salud Pública* 2001; 10:388-394.[accessed 14.11.06]
- 718. World Health Organization: Expanded Programme on Immunization, Global Advisory Group. IV: injection equipment and sterilization practices. Wkly Epidemiol Rec 1987; 62:8-9.
- 719. Centers for Disease Control and Prevention: General Recommendations on Immunization: Recommendations of the Advisory Committee on Immunization Practices (ACIP). *MMWR Recomm Rep* 1994; 43(RR-1):1-38.
- 720. Department of Defense: MMQC-97-1169 Automatic jet hypodermic injection units/withdrawal. Fort Detrick, MD, Quad Service MMQC USAMMA/AFMLO/NMLC, December 5, 1997. [accessed 12.12.11] http://usamma.detrick.army.mil/ftp/mmqc messages/Q971169.txt
- 721. Felton International, Inc., Felton Medical, Inc. (purchased Chemical Automatics Design Bureau technology in 2000). Shawnee Mission, KS. web.archive.org/web/20031011170031fw_/http://www.feltonint.com, web.archive.org/web/20071216165529/http://www.pulse-nfs.com, www.hbs.gov/nypo/meetings/dec2003/Contents/ThursdayPM/Mathews.pdf
- 722. Kelly K., Loskutov A., Zehrung D., et al: Preventing contamination between injections with multiple-use nozzle needle-free injectors: a safety trial. *Vaccine* 2008; 26:1344-1352.
- 723. Centers for Disease Control, and Prevention: General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP): jet injection. *MMWR Morb Mortal Wkly Rep* 2011; 60:16.[accessed 12.12.11]
- 724. World Health Organization: Safety of injections in immunization programmes: WHO recommended policy. *World Health Organization, Global Programme on Vaccines and Immunizations* 1998.1-11.document WHO/EPI/LHIS/96.05, Rev. 1
- 725. Medical International Technologies, Inc. Montreal, Quebec, Canada. www.mitcanada.ca., www.mitchina.cn
- 726. PR Newswire: MIT China receives Chinese FDA approval for MED-JET products. February 3, 2011. www.mitneedlefree.com/en/news/118-mit-china-receives-chinese-fda-approval-for-med-jetr-products-
- 727. PR Newswire: MIT Canada launches MED-JET products in Russia after receiving regulatory approval. April 7, 2011. www.mitneedlefree.com/en/news/119-mit-canada-launches-med-jetr-products-in-russia-after-receiving-regulatory-approval-
- 728. Alibek K., Handelman S.: Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World: Told from Inside by the Man Who Ran It. New York, Dell, 1999.

- 729. Gapochko K.G., Vasilenko A.Z.h., Misnikov O.P., et al: The clinico-immunological validation of associated immunization [in Russian]. *Voen Med Zh* 1992; 3:35-38.
- 730. Iject. Needle-free Injection System (product brochure). Tualatin, OR: Bioject, Inc. web.archive.org/web/20110523140213/http://www.bioject.com/services/researchdevelopment#iject and www.bioject.com/pdf/Iject.pdf; [accessed 04.01.12].
- 731. Antares Pharma, Inc. Ewing, NJ (successor of Medi-Ject, Daystrol-Scientific, and Derata corporations; Vaccijet technology acquired in 2001 from Endos Pharma, Laons, France). www.mediject.com; www.mediject.com; www.antarespharma.com/products/, (Avijet is Vaccijet électrique design used by Merial³²⁹ for poultry vaccination).
- 732. INJEX-Equidyne Systems, Inc. (wholly owned subsidiary of HNS International, Inc., successor to American Electromedics Corporation; INJEX technology marketed in arrangement with Rösch AG Medizintechnik). Anaheim, CA. www.injex.com, www.injex.com, www.injex.de.
- 733. National Medical Products, Inc. Irvine, CA. http://jtip.com
- 734. Zogenix, Inc. Hayward, CA (technology originated by Weston Medical, PLC, and then further developed by Aradigm Corp.). www.zogenix.com
- 735. Brandes J., Cady R., Freitag F., et al: Needle-free subcutaneous sumatriptan (SUMAVEL DosePro): bioequivalence and ease of use. *Headache* 2009; 49:1435-1444.
- 736. Sanofi Pasteur SA. Lyon, France. (Jet injection technology developed under corporate predecessors: Institut Mérieux, Pasteur Mérieux Sérums & Vaccins, and Pasteur-Mérieux-Connaught.) www.sanofipasteur.com
- 737. Galy M., Genet A., Saliou P.: Un progrès dans le domaine de l'injection sans aiguille: le système Imule. S.T.P. Pharma Pratiques 1992; 4:261-266.(France)
- 738. Gorres J.P., Lager K.M., Kong W.-P., et al: DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs. *Clin Vaccine Immunol* 2011; 18:1987-1995.
- 739. Ault A., Zajac A.M., Kong W.-P., et al: Immunogenicity and clinical protection against equine influenza by gene-based DNA vaccination of ponies. *Vaccine* 2012; 30:3965-3974.
- 740. Stout R.R., Gutierrez M.J., Freeland P.J., et al: Needle-free injections using a spring-powered device for subcutaneous, intramuscular and intradermal injections. *Drug Deliv Technol* 2007; 7:40-43.[accessed 12.12.11]
- 741. PATH: Technology solutions for global health: disposable-syringe jet injection. May 2012. [accessed 19.06.12] http://www.path.org/publications/files/TS update dsji.pdf
- 742. PATH: Disposable-cartridge jet injectors: changing the landscape of vaccination and immunization delivery programs worldwide: press release. 26 March 2008. [accessed 12.12.11] www.path.org/news/pr080326-dcji.php
- 743. US Food Drug Administration: Draft guidance for industry and FDA staff: technical considerations for pen, jet, and related injectors intended for use with drugs and biological products. April 2009. [accessed 12.12.11] www.fda.gov/downloads/RegulatoryInformation/Guidances/UCM147095.pdf
- 744. Thompson B.M., Kendall L.R.: FDA's new draft guidance on technical considerations for pen, jet and related injectors intended for use with drugs and biological products: comments and concerns. *Drug Deliv Technol* 2009; 9:28-30.[accessed 12.12.11]
- 745. US Government. Regulations.gov. Docket Folder Summary. Docket ID: FDA-2009-D-0179. www.regulations.gov/#!docketDetail;rpp=10;po=0;D=FDA-2009-D-0179; [accessed 12.12.11].
- 746. PATH: Comments to Docket no. FDA-2009-D-0179. 23 July 2009. [accessed 12.12.11] www.regulations.gov/#!documentDetail;D=FDA-2009-D-0179-0014
- 747. Food and Drug Administration: Use of approved drugs for unlabelled indications. *FDA Drug Bull* 1982; 12:4-5. http://www.circare.org/fda/fdadrugbulletin_041982.pdf [accessed 12.12.11]
- Parrish T.N.: FDA advises against flu vaccinations given by jet injectors. Pittsburgh Tribune-Review, 22 October 2011. [accessed 12.12.11] www.pittsburghlive.com/x/pittsburghtrib/news/s_763260.html
- 749. Food and Drug Administration: FDA updated communication on use of jet injectors with inactivated influenza vaccines. 26 October 2011. [accessed 12.12.11] www.fda.gov/BiologicsBloodVaccines/QuestionsaboutVaccines/ucm276773.htm
- 750. Centers for Disease Control and Prevention: General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP): jet injection. *MMWR Recomm Rep* 2006; 55(RR-15):18.[accessed 12.12.11]
- 751. Centers for Disease Control and Prevention: General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices and the American Academy of Family Physicians: jet injection. *MMWR Recomm Rep* 2002; 51(RR-2):12-13.[accessed 12.12.11]
- 752. Bitter C., Zimmerman K., Surber C.: Nasal drug delivery in humans. Curr Probl Dermatol 2011; 40:20-35.
- 753. Henning A., Hein S., Schneider M., et al: Pulmonary drug delivery: medicines for inhalation. *Handb Exp Pharmacol* 2010; 197:171-192.
- 754. Djupesland P.G., Skretting A., Winderen M., et al: Breath actuated device improves delivery to target sites beyond the nasal valve. *Laryngoscope* 2006; 116:466-472.
- 755. Pontiroli A.E., Cladera A., Pozza G.: Intranasal drug delivery: potential advantages and limitations from a clinical pharmacokinetic perspective. *Clin Pharamcokinet* 1989; 17:299-307.
- 756. Bienenstock J.: *Mucosal and other mechanisms of resistance in the respiratory tract: an overview.* In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:1401-1402.

- 757. Vijay-Kumar M., Gewirtz A.T.: *Role of epithelium in antigen presentation*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:423-434.
- 758. Kelsall B.L., Leon F., Smythies L.E.: *Antigen handling and presentation by mucosal dendritic cells and macrophages*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:451-486.
- 759. Fujimura Y.: Evidence of M cells as portals of entry for antigens in the nasopharyngeal lymphoid tissue of humans. *Virchows Arch* 2000; 436:560-566.
- 760. Kraal G.: *Nasal associated lymphoid tissue*. In: Mestecky J., Lamm M.E., Strober W., et al ed. *Mucosal Immunology*, Amsterdam: Elsevier; 2005:415-434.3rd ed
- 761. Stober W., McGhee J.R.: *Inductive and effector tissues and cells of the mucosal immune system*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:371-374.
- 762. Suman J.D., Laube B.L., Dalby R.: Comparison of nasal deposition and clearance of aerosol generated by a nebulizer and an aqueous spray pump. *Pharm Res* 1999; 16:1648-1652.
- 763. Brandtzaeg P., Carlsen H.E., Farstad I.N.: *The human mucosal B-cell system*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:617-654.
- 764. Neutra M.R., Kozlowski P.A.: Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006; 6:148-158.
- 765. Mestecky J.: The common mucosal immune system and current strategies for induction of immune responses in external secretions. *J Clin Immunol* 1987; 7:265-269.
- 766. Mestecky J., Moldoveanu Z., Elson C.O.: Immune response versus mucosal tolerance to mucosally administered antigens. *Vaccine* 2005; 23:1800-1803.
- 767. Balmelli C., Demotz S., Acha-Orbea H., et al: Trachea, lung, and tracheobronchial lymph nodes are the major sites where antigen-presenting cells are detected after nasal vaccination of mice with human papillomavirus type 16 virus-like particles. *J Virol* 2002; 76:12596-12602.
- 768. Ge S., Wang Z.: An overview of influenza A virus receptors. Crit Rev Microbiol 2011; 37:157-165.
- 769. Laube B.L.: The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination. *Respir Care* 2005; 50:1161-1176.
- 770. Dunn C., Curran M.P.: Inhaled human insulin (Exubera): a review of its use in adult patients with diabetes mellitus. *Drugs* 2006; 66:1013-1032.
- 771. Johnson A.: *Insulin flop costs Pfizer 2.8 billion. Wall Street J*, October 19, 2007:A1.http://online.wsj.com/article/SB119269071993163273.html
- 772. Centers for Disease Control and Prevention: Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 2004; 53(RR-3):1-36.
- 773. Sullivan V., Bhuta-Wills A., Hajiloo S.: *AccuSpray on demand. Fluent News Spring 2003*. 2003:14.www.scribd.com/doc/26129431/HVAC-Handbook-CFD-for-HVAC-by-Fluent
- 774. Simon J.K., Pasetti M.F., Viret J.F., et al: A clinical study to assess the safety and immunogenicity of attenuated measles vaccine administered intranasally to healthy adults. *Hum Vaccin* 2007; 3(2):54-58.
- 775. Simon J., Ramirez K., Cuberos L., et al: Mucosal IgA responses in healthy adult volunteers following intranasal spray delivery of a live attenuated measles vaccine. *Clin Vaccine Immunol* 2011; 18:355-1331.
- 776. Wong-Chew R.M., Islas-Romero R., Garcia-Garcia Mde L., et al: Immunogenicity of aerosol measles vaccine given as the primary measles immunization to nine-month-old Mexican children. *Vaccine* 2006; 24:683-690.
- 777. Wong-Chew R.M., Islas-Romero R., Garcia-Garcia Mde L., et al: Induction of cellular and humoral immunity after aerosol or subcutaneous administration of Edmonston-Zagreb measles vaccine given as the primary dose to 12-month-old children. *J Infect Dis* 2004; 189:254-257.
- 778. De Castro J.F., Kumate J.: Vaccination against measles: the situation in Mexico and America: advances in the method of aerosol immunization [in Spanish]. *Bol Med Hosp Infant Mex* 1990; 47:449-461.
- 779. Dilraj A., Cutts F., de Castro J.: Response to different measles vaccine strains given by aerosol and subcutaneous routes to schoolchildren: a randomized trial. *Lancet* 2000; 355:798-803.
- 780. IPI Medical Products. IPI nebulizer. Chicago, IL.
- 781. Cutts F., Fernandez de Castro J., Bennett J.V., et al: *Vaccine Nebulizers. United States Patent Application Publication US* 2010/0074911 A1, 2010. inventors www.freepatentsonline.com/20100074911.pdf
- 782. Leung K., Louca E., Gray M., et al: Use of the next generation pharmaceutical impactor for particle size distribution measurement of live viral aerosol vaccines. *J Aerosol Med* 2005; 18:414-426.
- 783. Bennett J.V., Fernandez de Castro J., Poblete R., et al: A new, rapid, and promising approach to aerosol immunization: inflatable bags and valved masks. *Vaccine* 2009; 27:4571-4575.
- 784. Coates A.L., Tipples G., Leung K., et al: How many infective viral particles are necessary for successful mass measles immunization by aerosol?. *Vaccine* 2006; 24:1578-1585.
- 785. Henao-Restrepo A.M., Greco M., Laurie X., et al: WHO Product Development Group for Measles Aerosol Project. Measles aerosol vaccine project. *Procedia Vaccinol* 2010; 2:147-150.
- 786. de Swart R.L., Kuiken T., Fernandez-de Castro J., et al: Aerosol measles vaccination in macaques: preclinical studies of immune responses and safety. *Vaccine* 2006; 24:6424-6436.

- 787. Trudell Medical International. AeroEclipse nebulizer. London, Ontario, Canada. www.trudellmed.com
- 788. OMRON Corp. ComPair nebulizer. Kyoto, Japan. www.omron.com
- 789. Aerogen, Ltd. Aeroneb nebulizer. Galway, Ireland. www.aerogen.com
- 790. Cohen B.J., Parry R.P., Andrews N., et al: Laboratory methods for assessing vaccine potency retained in aerosol outputs from nebulizers: application to World Health Organization measles aerosol project. *Vaccine* 2008; 26:3534-3539.
- 791. Bavdekar A. (principal investigator). WHO/MAP/IND/02 Pivotal study to evaluate the immunogenicity and safety of a measles vaccine given by aerosolized inhalation: randomized controlled trial. Clinical Trials Registry India number: CTRI/2009/091/000673. www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=862
- 792. OptiNose, Inc. OptiMist nasal spray device. Yardley, PA (OptiNose AS, Oslo, Norway). www.optinose.no
- 793. Bakke H., Samdal H.H., Holst J., et al: Oral spray immunization may be an alternative to intranasal vaccine delivery to induce systemic antibodies but not nasal mucosal or cellular immunity. *Scand J Immunol* 2006; 63:223-231.
- 794. Eppendorf AG. Combitips Plus pipette dispenser. Hamburg, Germany. www.eppendorf.com
- 795. Huo Z., Sinha R., McNeela E.A., et al: Induction of protective serum meningococcal bactericidal and diphtheria neutralizing antibodies and mucosal immunoglobulin A in volunteers by nasal insufflations of the Neisseria meningitides serogroup C polysaccharide-CRM197 conjugate vaccine mixed with chitosan. *Infect Immun* 2005; 73:8256-8265.
- 796. Twincer dry powder inhaler. Indes, Enschede, Netherlands: University of Groningen. www.indes.eu/Product.aspx?Product=9
- 797. de Boer A.H., Hagedoorn P., Westerman E.M., et al: Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer) for high powder doses. *Eur J Pharm Sci* 2006; 28:171-178.
- 798. Saluja V., Amorij J.P., Kapteyn J.C., et al: A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. *J Control Release* 2010; 144:127-133.
- 799. Aktiv-Dry, LLC. Boulder, CO. www.aktiv-dry.com
- 800. RPC Formatec GmbH. Mellrichstadt, Gemany. www.rpc-formatec.de
- 801. Lay J.: *The man fighting measles one breath at a time. Coloradan Magazine*, Boulder), (University of Colorado, March 2011. [accessed 04.01.12] www.coloradanmagazine.org/2011/03/01/the-man-fighting-measles
- 802. Kisich K.O., Higgins M.P., Park I., et al: Dry powder measles vaccine: particle deposition, virus replication, and immune response in cotton rats following inhalation. *Vaccine* 2011; 29:905-912.
- 803. Lin W.H., Griffin D.E., Rota P.A., et al: Successful respiratory immunization with dry powder live-attenuated measles virus vaccine in rhesus macaques. *Proc Natl Acad Sci U S A* 2011; 108:2987-2992.
- 804. Huang J., Garmise J.R., Crowder M.T., et al: A novel dry powder influenza vaccine and intranasal delivery technology: introduction of systemic and mucosal immune responses in rats. *Vaccine* 2004; 23:794-801.
- 805. Creare, Inc. Hanover, NH. www.creare.com
- 806. Smith J.H., Brooks P., Johnson S., et al: Aerosol vaccination induces robust protective immunity to homologous and heterologous influenza infection in mice. *Vaccine* 2011; 29:2568-2575.
- 807. Smith JH, Papania M, Knaus D, et al. Nebulized live-attenuated influenza vaccine provides protection in ferrets at a reduced dose. Vaccine (In press).
- 808. AerovectRx, Inc. Atlanta, GA. web.archive.org/web/20110722053004/http://www.aerovectrx.com/
- 809. CFD Research Corporation, Inc. (aka CFDRC, Inc. and Computational Fluid Dynamics Research Corp.). Huntsville, AL. www.cfdrc.com/bio; [accessed 05.01.12].
- Michalek S.M., O'Hagen D.T., Childers N.K., et al: *Antigen delivery systems, I: non-living microparticles, liposomes, and immune stimulating complexes (ISCOMS)*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:987-1008.
- 811. Curtiss R.: Antigen delivery systems, II: development of live recombinant attenuated bacterial antigen and DNA vaccine delivery vector vaccines. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. Mucosal Immunology, Burlington, MA: Elsevier; 2005:1009-1038
- 812. Rosenthal K.L.: Recombinant live viral vectors as vaccines for mucosal immunity. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. Mucosal Immunology, Burlington, MA: Elsevier; 2005:1039-1052.
- 813. Mestecky J., Michalek S.M., Moldoveanu Z., et al: Routes of immunization and antigen delivery systems for optimal mucosal immune responses in humans. *Behring Inst Mitt* 1997; 98:33-43.
- 814. Kersten G., Hirschberg H.: Antigen delivery systems. *Expert Rev Vaccines* 2004; 3:453-462.
- 815. Luhrmann A., Tschernig T., Pabst R., et al: Improved intranasal immunization with live-attenuated measles virus after co-inoculation of the lipopeptide MALP-2. *Vaccine* 2005; 23:4721-4726.
- 816. Cusi M.G., Correale P., Valassina M., et al: Comparative study of the immune response in mice immunized with four live attenuated strains of mumps virus by intranasal or intramuscular route. *Arch Virol* 2001; 146:1241-1248.
- 817. Iuminova N.V., Krasnova V.P., Liashenko V.A.: The specific activity and immunological safety of a live mumps vaccine from the Leningrad-3 strain in intranasally revaccinated adult subjects [in Russian]. *Vopr Virusol* 1994; 39:113-116.
- 818. Krasnova V.P., Iuminova N.V., Liashenko V.A.: An intranasal method of revaccination against mumps [in Russian]. *Vopr Virusol* 1994; 39:24-26.
- 819. Ogra P.L., Chiba Y., Beutner K.R., et al: Vaccination by non-parenteral routes: characteristics of immune response. *Dev Biol Stand* 1976; 33:19-26.

- 820. Terada K., Niizuma T., Ogita S., et al: Responses of varicella zoster virus (VZV)-specific immunity in seropositive adults after inhalation of inactivated or live attenuated varicella vaccine. *Vaccine* 2002; 20:3638-3643.
- 821. Tsuji T., Shiraki K., Sato H., et al: Humoral immunoresponse to varicella-zoster virus pernasally coadministered with Escherichia coli enterotoxin in mice. *Vaccine* 2000; 18:2049-2054.
- 822. Parker J.N., Pfister L.A., Quenelle D., et al: Genetically engineered herpes simplex viruses that express IL-12 or GM-CSF as vaccine candidates. *Vaccine* 2006; 24:1644-1652.
- 823. Lin Y.H., Deatly A.M., Chen W., et al: Genetic stability determinants of temperature sensitive, live attenuated respiratory syncytial virus vaccine candidates. *Virus Res* 2006; 115:9-15.
- 824. Nolan S.M., Surman S.R., Amaro-Carambot E., et al: Live-attenuated intranasal parainfluenza virus type 2 vaccine candidates developed by reverse genetics containing L polymerase protein mutations imported from heterologous paramyxoviruses. *Vaccine* 2005; 23:4765-4774.
- 825. Valosky J., Hishiki H., Zaoutis T.E., et al: Induction of mucosal B-cell memory by intranasal immunization of mice with respiratory syncytial virus. *Clin Diagn Lab Immunol* 2005; 12:171-179.
- 826. Belshe R.B., Newman F.K., Anderson E.L., et al: Evaluation of combined live, attenuated respiratory syncytial virus and parainfluenza 3 virus vaccines in infants and young children. *J Infect Dis* 2004; 190:2096-2103.
- 827. Choi A.H., McNeal M.M., Basu M., et al: Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. *Vaccine* 2002; 20:3310-3321.
- 828. Enose Y., Ui M., Miyake A., et al: Protection by intranasal immunization of a nef-deleted, nonpathogenic SHIV against intravaginal challenge with a heterologous pathogenic SHIV. *Virology* 2002; 298:306-316.
- 829. Parr E.L., Parr M.B.: Immune responses and protection against vaginal infection after nasal or vaginal immunization with attenuated herpes simplex virus type-2. *Immunology* 1999; 98:639-645.
- 830. Niedrig M., Stolte N., Fuchs D., et al: Intra-nasal infection of macaques with yellow fever (YF) vaccine strain 17D: a novel and economical approach for YF vaccination in man. *Vaccine* 1999; 17:1206-1210.
- 831. Belyakov I.M., Isakov D., Zhu Q., et al: Enhancement of CD8+ T cell immunity in the lung by CpG oligodeoxynucleotides increases protective efficacy of a modified vaccinia Ankara vaccine against lethal poxvirus infection even in a CD4-deficient host. *J Immunol* 2006; 177:6336-6343.
- 832. Phelps A.L., Gates A.J., Hillier M., et al: Comparative efficacy of modified vaccinia Ankara (MVA) as a potential replacement smallpox vaccine. *Vaccine* 2007; 25:34-42.
- 833. Meseda C.A., Garcia A.D., Kumar A., et al: Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. *Virology* 2005; 339:164-175.
- 834. MedImmune, Inc. Gaithersburg, MD. www.medimmune.com
- 835. Belshe R.B., Gruber W.C., Mendelman P.M., et al: Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. *J Infect Dis* 2000; 181:1133-1137.
- 836. Nichol K.L., Mendelman P.M., Mallon K.P., et al: Effectiveness of live attenuated intranasal influenza virus vaccine in healthy working adults: a randomized trial. *JAMA* 1999; 282:137-145.
- Ashkenazi S., Vertruyen A., Aristegui J., et al: Superior relative efficacy of live attenuated influenza vaccine compared with inactivated influenza vaccine in young children with recurrent respiratory tract infections. *Pediatr Infect Dis J* 2006; 25:870-879.
- 838. Fleming D.M., Crovari P., Wahn U., et al: Comparison of the efficacy and safety of live attenuated cold-adapted influenza vaccine, trivalent, with trivalent inactivated influenza virus vaccine in children and adolescents with asthma. *Pediatr Infect Dis J* 2006; 25:860-869.
- 839. Belshe R.B., Edwards K.M., Vesikari T., et al: Live attenuated versus inactivated influenza vaccine in infants and young children. *N Engl J Med* 2007; 356:685-696.
- 840. Vesikari T., Fleming D.M., Aristegui J.F., et al: Safety, efficacy, and effectiveness of cold-adapted influenza vaccine-trivalent against community-acquired, culture-confirmed influenza in young children attending day care. *Pediatrics* 2006; 118:2298-2312.
- Tam J.S., Capeding M.R., Lum L.C., et al: Efficacy and safety of a live attenuated, cold-adapted influenza vaccine, trivalent against culture-confirmed influenza in young children in Asia. *Pediatr Infect Dis J* 2007; 26:619-628.
- Belshe R.B., Gruber W.C., Mendelman P.M., et al: Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine against a variant (A/Sydney) not contained in the vaccine. *J Pediatr* 2000; 136:168-175.
- Piedra P.A., Gaglani M.J., Kozinetz C.A., et al: Herd immunity in adults against influenza-related illnesses with use of the trivalent-live attenuated influenza vaccine (CAIV-T) in children. *Vaccine* 2005; 23:1540-1548.
- 844. Sabin A.B., Fernandez de Castro J., Flores Arechiga A., et al: Clinical trials of inhaled aerosol of human diploid and chick embryo measles vaccine. *Lancet* 1982; 2:602.
- 845. Sabin A.B., Flores Arechiga A., Fernadez de Castro J., et al: Successful immunization of children with and without maternal antibody by aerosolized measles vaccine. I: different results with undiluted human diploid cell and chick embryo fibroblast vaccines. *JAMA* 1983; 249:2651-2662.
- 846. Sabin A.B., Flores Arechiga A., Fernadez de Castro J., et al: Successful immunization of infants with and without maternal antibody by aerosolized measles vaccine, II: vaccine comparisons and evidence for multiple antibody response. *JAMA* 1984; 251:2362-2371.
- 847. Sabin A.B., Albrecht P., Takeda A.K.: High effectiveness of aerosolized chick embryo fibroblast measles vaccine in seven month old and older infants. *J Infect Dis* 1985; 152:1231-1237.

- 848. Low N., Kraemer S., Schneider M., et al: Immunogenicity and safety of aerosolized measles vaccine: systematic review and metaanalysis. *Vaccine* 2008; 26:383-398.
- 849. Hiremath G.S., Omer S.B.: A meta-analysis of studies comparing the respiratory route with the subcutaneous route of measles vaccine administration. *Hum Vaccin* 2005; 1:30-36.
- 850. Valdespino-Gómez J.L., de Lourdes Garcia-Garcia M., Fernandez-de-Castro J., et al: Measles aerosol vaccination. *Curr Top Microbiol Immunol* 2006; 304:165-193.
- 851. McCrumb F.: Studies with live attenuated measles virus vaccine: clinical and immunologic responses in institutionalized children. *Am J Dis Child* 1961; 101:45-56.
- 852. McCrumb F., Bulkeley J., Hornick R., et al: Clinical trials with living attenuated measles virus vaccines. *Am J Public Health* 1962; 52:11-15.
- 853. Black F., Sheridan S.: Studies on an attenuated measles virus vaccine. N Engl J Med 1960; 263:165-169.
- 854. Cernescu C., Cahal N.: Antimeasles vaccination by natural routes: experimental background and practical consequences. *Rev J Med Virol* 1984; 35:259-271.
- 855. Whittle H., Rowland M., Mann G.: Failure of measles vaccine sprayed into the oropharynx of infants. *Lancet* 1983; 1:1045.
- 856. Terskikh I.I., Danilov A.I., Shchelchkov G.I., et al: Theoretical substantiation and effectiveness of immunization with aerosols of liquid measles vaccine [in Russian]. *Vestn Akad Med Nauk SSSR* 1971; 26:84-90.
- 857. Kress S., Schluederbery A., Hornick R., et al: Studies with live attenuated measles virus vaccine. Am J Dis Child 1961; 101:57-63.
- 858. Simasathien S., Migasena S., Bellini W., et al: Measles vaccination of Thai infants by intranasal and subcutaneous routes: possible interference from respiratory infections. *Vaccine* 1997; 15:329-334.
- 859. Beck M., Smerdel S., Dedic I., et al: Immune response to Edmonston-Zagreb measles virus strain in monovalent and combined MMR vaccine. *Dev Biol Stand* 1986; 65:95-100.
- 860. Okuno Y., Ueda S., Hosai H., et al: Studies on the combined use of killed and live measles vaccine, II: advantages of the inhalation method. *Biken J* 1965; 8:81-85.
- 861. Ueda S., Hosai H., Minekawa Y., et al: Studies on the combined use of killed and live measles vaccine, III: conditions for the "take" of live vaccine. *Biken J* 1966; 9:97-101.
- 862. De Castro J.F., Valdespino Gomez J.F., Diaz Ortega J.F., et al: Diploid cell measles vaccine. JAMA 1986; 256:714.
- 863. Torigoe S., Biritwum R.B., Isomura S., et al: Measles in Ghana: a trial of an alternative means of administration of measles vaccine. *J Trop Pediatr* 1986; 32:304-309.
- 864. Sepúlveda-Amor J., et al: A randomized trial demonstrating successful boosting responses following simultaneous aerosols of measles and rubella vaccines in school age children. *Vaccine* 2002; 20:2790-2795.
- 865. Bennett J.V., Fernandez de Castro J., Valdespino-Gomez J.L., et al: Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: randomized trials in Mexican schoolchildren. *Bull World Health Organ* 2002; 80:806-812.
- 866. Bellanti J.A., Zeligs B.J., Mendez-Inocencio J., et al: Immunologic studies of specific mucosal and systemic immune responses in Mexican school children after booster aerosol or subcutaneous immunization with measles vaccine. *Vaccine* 2004; 22:1214-1220.
- 867. Dilraj A., Cutts F., Bennett J., et al: Persistence of measles antibody two years after revaccination by aerosol or subcutaneous routes. *Pediatr Infect Dis J* 2000; 12:1211-1213.
- 868. Dilraj A., Sukhoo R., Cutts F.T., et al: Aerosol and subcutaneous measles vaccine: measles antibody responses 6 years after revaccination. *Vaccine* 2007; 25:4170-4174.
- 869. Diaz-Ortega J.L., Bennett J.V., Castaneda D., et al: Antibody persistence in young adults 1 year after MMR immunization by aerosol or by subcutaneous route. *Vaccine* 2010; 28:7228-7232.
- 870. Diaz-Ortega J.L., Bennett J.V., Castaneda D., et al: Successful seroresponses to measles and rubella following aerosolized Triviraten vaccine, but poor response to aerosolized mumps (Rubini) component: comparisons with injected MMR. *Vaccine* 2010; 28:692-698.
- 871. Khanum S., Uddin N., Garelick H., et al: Comparison of Edmonston-Zagreb and Schwarz strains of measles vaccine given by aerosol or subcutaneous injection. *Lancet* 1987; 1:150-153.
- 872. Ekunwe E.O.: Immunization by inhalation of aerosolized measles vaccine. Ann Trop Paediatr 1990; 10:145-149.
- Wong-Chew R.M., Garcia-Leon M.L., Torrija B., et al: Increasing the time of exposure to aerosol measles vaccine elicits an immune response equivalent to that seen in 9-month-old mexican children given the same dose subcutaneously. *J Infect Dis* 2011; 204:426-432.
- 874. Fernandez Bracho J.G., Roldan Fernandez S.G.: Reacciones tempranas en escolares vacunados con antisarampionosa en aerosol. *Salud Publica Mex* 1990; 32:653-657.
- 875. De Castro J.F., Kumate-Rodrigues J., Sepúlveda J., et al: La vacunación antisarampionosa en Mexico por el metodo de aerosol. *Salud Publica Mex* 1997; 39:53-60.
- 876. Taylor-Robinson C.H., Mallinson H.: Risk of contact infection after intranasal rubella vaccination. Lancet 1979; 2:1128-1129.
- 877. Al-Nakib W., Best J.M., Banatvala J.E.: Rubella-specific serum and nasopharyngeal immunoglobulin responses following naturally acquired and vaccine-induced infection: prolonged persistence of virus-specific IgM. *Lancet* 1975; 1:182-185.
- 878. Ganguly R., Ogra P.L., Regas S., et al: Rubella immunization of volunteers via the respiratory tract. *Infect Immun* 1973; 8:497-502.
- 879. Moffat M.A., Gould J.J., Forbes F.A., et al: Studies with rubella vaccine (RA 27–3) using the subcutaneous and intranasal routes. *Scott Med J* 1972; 17:140-142.

- 880. Puschak R., Young M., McKee T.V., et al: Intranasal vaccination with RA 27–3 attenuated rubella virus. J Pediatr 1971; 79:55-60.
- Ingalls T.H., Horne Jr. H.W.: Immunisation of women with rubella (RA27-3) vaccine administered intranasally. *Lancet* 1971; 1:1830-1832
- 882. Ingalls T.H., Plotkin S.A., Philbrook F.R., et al: Immunisation of schoolchildren with rubella (RA27-3) vaccine: intranasal and subcutaneous administration. *Lancet* 1970; 1:99-101.
- 883. Saidi S., Naficy K.: Subcutaneous and intranasal administration of RA 27–3 rubella vaccine: alone and in conjunction with live attenuated measles vaccine. *Am J Dis Child* 1969; 118:209-212.
- 884. Kuck D., Lau T., Leuchs B., et al: Intranasal vaccination with recombinant adeno-associated virus type 5 against human papillomavirus type 16 L1. *J Virol* 2006; 80:2621-2630.
- 885. Zhang J., Wu X., Qin C., et al: A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and beta-amyloid plaques in a mouse model of Alzheimer's disease. *Neurobiol Dis* 2003; 14:365-379.
- 886. Xin K.Q., Urabe M., Yang J., et al: A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. *Hum Gene Ther* 2001; 12:1047-1061.
- 887. Xing Z., Lichty B.D.: Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. *Tuberculosis* 2006; 86:211-217.
- 888. Palin A., Chattopadhyay A., Park S., et al: An optimized vaccine vector based on recombinant vesicular stomatitis virus gives high-level, long-term protection against Yersinia pestis challenge. *Vaccine* 2006; 25:741-750.
- 889. Jiang P., Liu Y., Yin X., et al: Elicitation of neutralizing antibodies by intranasal administration of recombinant vesicular stomatitis virus expressing human immunodeficiency virus type 1 gp120. *Biochem Biophys Res Commun* 2006; 339:526-532.
- 890. Egan M.A., Chong S.Y., Megati S., et al: Priming with plasmid DNAs expressing interleukin-12 and simian immunodeficiency virus gag enhances the immunogenicity and efficacy of an experimental AIDS vaccine based on recombinant vesicular stomatitis virus.

 AIDS Res Hum Retroviruses 2005; 21:629-643.
- 891. Tan G.S., McKenna P.M., Koser M.L., et al: Strong cellular and humoral anti-HIV Env immune responses induced by a heterologous rhabdoviral prime-boost approach. *Virology* 2005; 331:82-93.
- 892. Schlereth B., Buonocore L., Tietz A., et al: Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. *J Gen Virol* 2003; 84:2145-2151.
- 893. Roberts A., Buonocore L., Price R., et al: Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 1999; 73:3723-3732.
- 894. Haglund K., Leiner I., Kerksiek K., et al: High-level primary CD8+ T-cell response to human immunodeficiency virus type 1 gag and env generated by vaccination with recombinant vesicular stomatitis viruses. *J Virol* 2002; 76:2730-2738.
- 895. Roberts A., Kretzschmar E., Perkins A.S., et al: Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. *J Virol* 1998; 72:4704-4711.
- 896. Mlambo G., Kumar N., Yoshida S.: Functional immunogenicity of baculovirus expressing Pfs25, a human malaria transmission-blocking vaccine candidate antigen. *Vaccine* 2010; 28:7025-7029.
- 897. Chen C.Y., Liu H.J., Tsai C.P., et al: Baculovirus as an avian influenza vaccine vector: differential immune responses elicited by different vector forms. *Vaccine* 2010; 28:7644-7651.
- 898. Greer C.E., Zhou F., Goodsell A., et al: Long-term protection in hamsters against human parainfluenza virus type 3 following mucosal or combinations of mucosal and systemic immunizations with chimeric alphavirus-based replicon particles. *Scand J Immunol* 2007; 66:645-653.
- 899. Bridle B.W., Boudreau J.E., Lichty B.D., et al: Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. *Mol Ther* 2010; 17:1814-1821.
- 900. Li J., Faber M., Papaneri A., et al: A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice. *Virology* 2006; 356:147-154.
- Santosuosso M., McCormick S., Zhang X., et al: Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. *Infect Immun* 2006; 74:4634-4643.
- 902. See R.H., Zakhartchouk A.N., Petric M., et al: Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus. *J Gen Virol* 2006; 87:641-650.
- 903. Santosuosso M., Zhang X., McCormick S., et al: Mechanisms of mucosal and parenteral tuberculosis vaccinations: adenoviral-based mucosal immunization preferentially elicits sustained accumulation of immune protective CD4 and CD8 T cells within the airway lumen. *J Immunol* 2005; 174:7986-7994.
- 904. Liu X., Yang T., Sun Q.M., et al: Efficient intranasal immunization of newborn mice with recombinant adenovirus expressing rotavirus protein VP4 against oral rotavirus infection. *Acta Virol* 2005; 49:17-22.
- 905. Phillpotts R.J., O'Brien L., Appleton R.E., et al: Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. *Vaccine* 2005; 23:1615-1623.
- 906. Shanley J.D., Wu C.A.: Intranasal immunization with a replication-deficient adenovirus vector expressing glycoprotein H of murine cytomegalovirus induces mucosal and systemic immunity. *Vaccine* 2005; 23:996-1003.
- 907. Wang J., Thorson L., Stokes R.W., et al: Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. *J Immunol* 2004; 173:6357-6365.

- 908. Lemiale F., Kong W.P., Akyurek L.M., et al: Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. *J Virol* 2003; 77:10078-10087.
- 909. Shanley J.D., Wu C.A.: Mucosal immunization with a replication-deficient adenovirus vector expressing murine cytomegalovirus glycoprotein B induces mucosal and systemic immunity. *Vaccine* 2003; 21:2632-2642.
- 910. Xiang Z., Ertl H.C.: Induction of mucosal immunity with a replication-defective adenoviral recombinant. *Vaccine* 1999; 17:2003-2008
- 911. Gallichan W.S., Rosenthal K.L.: Long-term immunity and protection against herpes simplex virus type 2 in the murine female genital tract after mucosal but not systemic immunization. *J Infect Dis* 1998; 177:1155-1161.
- 912. Baca-Estrada M.E., Liang X., Babiuk L.A., et al: Induction of mucosal immunity in cotton rats to haemagglutinin-esterase glycoprotein of bovine coronavirus by recombinant adenovirus. *Immunology* 1995; 86:134-140.
- 913. Lubeck M.D., Natuk R.J., Chengalvala M., et al: Immunogenicity of recombinant adenovirus-human immunodeficiency virus vaccines in chimpanzees following intranasal administration. *AIDS Res Hum Retroviruses* 1994; 10:1443-1449.[Erratum in AIDS Res Hum Retroviruses 11:189, 1995.]
- 914. Hsu K.H., Lubeck M.D., Bhat B.M., et al: Efficacy of adenovirus-vectored respiratory syncytial virus vaccines in a new ferret model. *Vaccine* 1994; 12:607-612.
- 915. Gallichan W.S., Johnson D.C., Graham F.L., et al: Mucosal immunity and protection after intranasal immunization with recombinant adenovirus expressing herpes simplex virus glycoprotein B. *J Infect Dis* 1993; 168:622-629.
- 916. Morin J.E., Lubeck M.D., Barton J.E., et al: Recombinant adenovirus induces antibody response to hepatitis B virus surface antigen in hamsters. *Proc Natl Acad Sci U S A* 1987; 84:4626-4630.
- 917. Moraes T.J., Lin G.H., Wen T., et al: Incorporation of 4-1BB ligand into an adenovirus vaccine vector increases the number of functional antigen-specific CD8 T cells and enhances the duration of protection against influenza-induced respiratory disease. *Vaccine* 2011; 29:6301-6312.
- 918. Winter L.E., Barenkamp S.J.: Construction and immunogenicity of recombinant adenovirus vaccines expressing the HMW1, HMW2, or Hia adhesion protein of nontypeable Haemophilus influenzae. *Clin Vaccine Immunol* 2010; 17:1567-1575.
- 919. Pratt W.D., Wang D., Nichols D.K., et al: Protection of nonhuman primates against two species of Ebola virus infection with a single complex adenovirus vector. *Clin Vaccine Immunol* 2010; 17:572-581.
- 920. Sofer-Podesta C., Ang J., Hackett N.R., et al: Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge. *Infect Immun* 2009; 77:1561-1568.
- 921. Bertley F.M., Kozlowski P.A., Wang S.W., et al: Control of simian/human immunodeficiency virus viremia and disease progression after IL-2-augmented DNA-modified vaccinia virus Ankara nasal vaccination in nonhuman primates. *J Immunol* 2004; 172:3745-3757
- 922. Bisht H., Roberts A., Vogel L., et al: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. *Proc Natl Acad Sci U S A* 2004; 101:6641-6646.
- 923. Goonetilleke N.P., McShane H., Hannan C.M., et al: Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guérin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. *J Immunol* 2003; 171:1602-1609.
- 924. Durbin A.P., Wyatt L.S., Siew J., et al: The immunogenicity and efficacy of intranasally or parenterally administered replication-deficient vaccinia-parainfluenza virus type 3 recombinants in rhesus monkeys. *Vaccine* 1998; 16:1324-1330.
- 925. Manrique M., Kozlowski P.A., Cobo-Molinos A., et al: Long-term control of simian immunodeficiency virus mac251 viremia to undetectable levels in half of infected female rhesus macaques nasally vaccinated with simian immunodeficiency virus DNA/recombinant modified vaccinia virus Ankara. *J Immunol* 2011; 186:3581-3593.
- 926. Corbett M., Bogers W.M., Heeney J.L., et al: Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic. *Proc Natl Acad Sci U S A* 2008; 105:2046-2051.
- 927. Gherardi M.M., Pérez-Jiménez E., Nájera J.L., et al: Induction of HIV immunity in the genital tract after intranasal delivery of a MVA vector: enhanced immunogenicity after DNA prime-modified vaccinia virus Ankara boost immunization schedule. *J Immunol* 2004; 172:6209-6220.
- 928. Song K., Bolton D.L., Wei C.J., et al: Genetic immunization in the lung induces potent local and systemic immune responses. *Proc Natl Acad Sci U S A* 2010; 107:22213-22218.
- 929. Locht C.: Live bacterial vectors for intranasal delivery of protective antigens. Pharm Sci Technol Today 2000; 3:121-128.
- 930. Pammit M.A., Raulie E.K., Lauriano C.M., et al: Intranasal vaccination with a defined attenuated Francisella novicida strain induces gamma interferon-dependent antibody-mediated protection against tularemia. *Infect Immun* 2006; 74:2063-2071.
- 931. Wu T.H., Hutt J.A., Garrison K.A., et al: Intranasal vaccination induces protective immunity against intranasal infection with virulent Francisella tularensis biovar A. *Infect Immun* 2005; 73:2644-2654.
- 932. Mielcarek N., Alonso S., Locht C.: Nasal vaccination using live bacterial vectors. Adv Drug Deliv Rev 2001; 51:55-69.
- 933. Garmory H.S., Leary S.E., Griffin K.F., et al: The use of live attenuated bacteria as a delivery system for heterologous antigens. *J Drug Target* 2003; 11:471-479.
- 934. Collins D.M., de Lisle G.W., Aldwell F.E., et al: A new attenuated Mycobacterium bovis vaccine protects brushtail possums (Trichosurus vulpecula) against experimental tuberculosis infection. *Vaccine* 2007; 25:4659-4664.
- 935. Salam M.A., Katz J., Michalek S.M.: Role of Toll-like receptors in host responses to a virulence antigen of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vector vaccine. *Vaccine* 2010; 28:4928-4936.

- 936. Biet F., Kremer L., Wolowczuk I.: Immune response induced by recombinant Mycobacterium bovis BCG producing the cholera toxin B subunit. *Infect Immun* 2003; 7:2933-2937.
- 937. Tree J.A., Williams A., Clark S., et al: Intranasal bacille Calmette-Guérin (BCG) vaccine dosage needs balancing between protection and lung pathology. *Clin Exp Immunol* 2004; 138:405-409.
- 938. Chen L., Wang J., Zganiacz A., et al: Single intranasal mucosal Mycobacterium bovis BCG vaccination confers improved protection compared to subcutaneous vaccination against pulmonary tuberculosis. *Infect Immun* 2004; 72:238-246.
- 939. Lyadova I.V., Vordermeier H.M., Eruslanov E.B., et al: Intranasal BCG vaccination protects BALB/c mice against virulent Mycobacterium bovis and accelerates production of IFN-gamma in their lungs. *Clin Exp Immunol* 2001; 126:274-279.
- 940. Falero-Diaz G., Challacombe S., Banerjee D., et al: Intranasal vaccination of mice against infection with Mycobacterium tuberculosis. *Vaccine* 2000; 18:3223-3229.
- 941. Nuermberger E.L., Yoshimatsu T., Tyagi S., et al: Paucibacillary tuberculosis in mice after prior aerosol immunization with Mycobacterium bovis BCG. *Infect Immun* 2004; 72:1065-1071.
- 942. Corner L.A., Buddle B.M., Pfeiffer D.U., et al: Aerosol vaccination of the brushtail possum (Trichosurus vulpecula) with bacilli Calmette-Guérin: the duration of protection. *Vet Microbiol* 2001; 81:181-191.
- 943. Copenhaver R.H., Sepulveda E., Armitige L.Y.: A mutant of Mycobacterium tuberculosis H37Rv that lacks expression of antigen 85A is attenuated in mice but retains vaccinogenic potential. *Infect Immun* 2004; 72:7084-7095.
- 944. Lagranderie M., Winter N., Balazuc A.M., et al: A cocktail of Mycobacterium bovis BCG recombinants expressing the SIV Nef, Env, and Gag antigens induces antibody and cytotoxic responses in mice vaccinated by different mucosal routes. AIDS Res Hum Retroviruses 1998; 14:1625-1633.
- 945. Edelman R., Palmer K., Russ K.G., et al: Safety and immunogenicity of recombinant bacille Calmette-Guérin (rBCG) expressing Borrelia burgdorferi outer surface protein A (OspA) lipoprotein in adult volunteers: a candidate Lyme disease vaccine. *Vaccine* 1999; 17:904-914.
- 946. Langermann S., Palaszynski S., Sadziene A., et al: Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. *Nature* 1994; 372:552-555.
- 947. Langermann S., Palaszynski S.R., Burlein J.E., et al: Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guérin vaccines expressing pneumococcal surface protein A. *J Exp Med* 1994; 180:2277-2286.
- 948. Mielcarek N., Debrie A.S., Raze D., et al: Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough. *PLoS Pathog* 2006; 2:e65.
- 949. Mielcarek N., Debrie A.S., Raze D., et al: Attenuated Bordetella pertussis: new live vaccines for intranasal immunisation. *Vaccine* 2006; 24(Suppl. 2):S54-S55.
- 950. Locht C., Antoine R., Raze D., et al: Bordetella pertussis from functional genomics to intranasal vaccination. *Int J Med Microbiol* 2004; 293:583-588.
- 951. Mielcarek N., Nordstrom I., Menozzi F.D., et al: Genital antibody responses in mice after intranasal infection with an attenuated candidate vector strain of Bordetella pertussis. *Infect Immun* 2000; 68:485-491.
- 952. Reveneau N., Alonso S., Jacob-Dubuisson F., et al: Tetanus toxin fragment C-specific priming by intranasal infection with recombinant Bordetella pertussis. *Vaccine* 2002; 20:926-933.
- 953. Alonso S., Willery E., Renauld-Mongenie G., et al: Production of non-typeable Haemophilus influenzae HtrA by recombinant Bordetella pertussis with the use of filamentous hemagglutinin as a carrier. *Infect Immun* 2005; 73:4295-4301.
- 954. Coppens I., Alonso S., Antoine R., et al: Production of Neisseria meningitides transferrin-binding protein B by recombinant Bordetella pertussis. *Infect Immun* 2001; 69:5440-5446.
- 955. Renauld-Mongenie G., Mielcarek N., Cornette J., et al: Induction of mucosal immune responses against a heterologous antigen fused to filamentous hemagglutinin after intranasal immunization with recombinant Bordetella pertussis. *Proc Natl Acad Sci U S A* 1996; 93:7944-7949.
- 956. Pasetti M.F., Salerno-Goncalves R., Sztein M.B.: Salmonella enterica serovar Typhi live vector vaccines delivered intranasally elicit regional and systemic specific CD8+ major histocompatibility class I-restricted cytotoxic T lymphocytes. *Infect Immun* 2002; 70:4009-4018.
- 957. Parida S.K., Huygen K., Ryffel B., et al: Novel bacterial delivery system with attenuated Salmonella typhimurium carrying plasmid encoding Mtb antigen 85A for mucosal immunization: establishment of proof of principle in TB mouse model. *Ann N Y Acad Sci* 2005; 1056:366-378.
- 958. Vindurampulle C.J., Cuberos L.F., Barry E.M., et al: Recombinant Salmonella enterica serovar Typhi in a prime-boost strategy. *Vaccine* 2004; 22:3744-3750.
- 959. Capozzo A.V., Cuberos L., Levine M.M.: Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. *Infect Immun* 2004; 72:4637-4646.
- 960. Morton M., Garmory H.S., Perkins S.D., et al: A Salmonella enterica serovar typhi vaccine expressing Yersinia pestis F1 antigen on its surface provides protection against plague in mice. *Vaccine* 2004; 22:2524-2532.
- 961. Coste A., Cohen J., Reinhardt M., et al: Nasal immunisation with Salmonella typhimurium producing rotavirus VP2 and VP6 antigens stimulates specific antibody response in serum and milk but fails to protect offspring. *Vaccine* 2001; 19:4167-4174.
- 962. Nardelli-Haefliger D., Benyacoub J., Lemoine R., et al: Nasal vaccination with attenuated Salmonella typhimurium strains expressing the hepatitis b nucleocapsid: dose response analysis. *Vaccine* 2001; 19:2854-2861.

- 963. Ward S.J., Douce G., Figueiredo D., et al: Immunogenicity of a Salmonella typhimurium aroA aroD vaccine expressing a nontoxic domain of Clostridium difficile toxin A. *Infect Immun* 1999; 67:2145-2152.
- 964. Hopkins S., Kraehenbuhl J.P., Schodel F., et al: A recombinant Salmonella typhimurium vaccine induces local immunity by four different routes of immunization. *Infect Immun* 1995; 63:3279-3286.
- 965. Sheoran A.S., Timoney J.F., Tinge S.A., et al: Intranasal immunogenicity of a Delta cya Delta crp-pabA mutant of Salmonella enterica serotype Typhimurium for the horse. *Vaccine* 2001; 19:3787-3795.
- 966. Anderson R.J., Pasetti M.F., Sztein M.B., et al: DeltaguaBA attenuated Shigella flexneri 2a strain CVD 1204 as a Shigella vaccine and as a live mucosal delivery system for fragment C of tetanus toxin. *Vaccine* 2000; 18:2193-2202.
- 967. Noriega F.R., Losonsky G., Wang J.Y., et al: Further characterization of delta aroA delta virG Shigella flexneri 2a strain CVD 1203 as a mucosal Shigella vaccine and as a live-vector vaccine for delivering antigens of enterotoxigenic Escherichia coli. *Infect Immun* 1996; 64:23-27.
- 968. Reveneau N., Geoffroy M.C., Locht C., et al: Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. *Vaccine* 2002; 20:1769-1777.
- 969. Grangette C., Muller-Alouf H., Goudercourt D., et al: Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum. *Infect Immun* 2001; 69:1547-1553.
- 970. Medaglini D., Ciabattini A., Spinosa M.R., et al: Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. *Vaccine* 2001; 19:1931-1939.
- 971. Mercenier A., Muller-Alouf H., Grangette C.: Lactic acid bacteria as live vaccines. Curr Issues Mol Biol 2000; 2:17-25.
- 972. Moorthy S.A., Yasawardena S.G., Ramasamy R.: Age-dependent systemic antibody responses and immunisation-associated changes in mice orally and nasally immunised with Lactococcus lactis expressing a malaria parasite protein. *Vaccine* 2009; 27:4947-4952.
- 973. Steidler L., Robinson K., Chamberlain L., et al: Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis co-expressing antigen and cytokine. *Infect Immun* 1998; 66:3183-3189.
- 974. Roberts M., Bacon A., Li J., et al: Prior immunity to homologous and heterologous Salmonella serotypes suppresses local and systemic anti-fragment C antibody responses and protection from tetanus toxin in mice immunized with Salmonella strains expressing fragment C. *Infect Immun* 1999; 67:3810-3815.
- 975. Herrmann J.E., Robinson H.A.: *DNA vaccines for mucosal immunity to infectious diseases*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier; 2005:1073-1084.
- 976. Fynan E.F., Webster R.G., Fuller D.H., et al: DNA vaccines: protective immunizations by parenteral, mucosal and gene gun inoculations. *Proc Natl Acad Sci U S A* 1993; 90:11478-11482.
- 977. Zavala-Spinetti L., Breslin M.B., Correa H., et al: Development and evaluation of a DNA vaccine based on Helicobacter pylori urease B: failure to prevent experimental infection in the mouse model. *Helicobacter* 2006; 11:517-522.
- 978. Wang J., Zhao C.A., Wang K., et al: Enhanced immunization after intranasal coadministration of Escherichia coli heat-labile enterotoxin B subunit and human papillomavirus 16-L1 DNA vaccine. *Chin Med J* 2006; 119:408-411.
- 979. Kent S.J., Dale C.J., Ranasinghe C.: Mucosally-administered human-simian immunodeficiency virus DNA and fowlpoxvirus-based recombinant vaccines reduce acute phase viral replication in macaques following vaginal challenge with CCR5-tropic SHIVSF162P3. *Vaccine* 2005; 23:5009-5021.
- 980. Hatzifoti C., Roussel Y., Harris A.G., et al: Mucosal immunization with a urease B DNA vaccine induces innate and cellular immune responses against Helicobacter pylori. *Helicobacter* 2006; 11:113-222.
- 981. Devito C., Zuber B., Schroder U., et al: Intranasal HIV-1-gp160-DNA/gp41 peptide prime-boost immunization regimen in mice results in long-term HIV-1 neutralizing humoral mucosal and systemic immunity. *J Immunol* 2004; 173:7078-7089.
- 982. Xu W., Shen Y., Jiang Z., et al: Intranasal delivery of chitosan-DNA vaccine generates mucosal SIgA and anti-CVB3 protection. *Vaccine* 2004; 22:3603-3612.
- 983. Garcia-Diaz A., Lopez-Andujar P., Rodriguez Diaz J., et al: Nasal immunization of mice with a rotavirus DNA vaccine that induces protective intestinal IgA antibodies. *Vaccine* 2004; 23:489-498.
- 984. Bivas-Benita M., Ottenhoff T.H., Junginger H.E., et al: Pulmonary DNA vaccination: concepts, possibilities and perspectives. *J Control Release* 2005; 107:1-29.
- 985. Locher C.P., Witt S.A., Ashlock B.M., et al: Human immunodeficiency virus type 2 DNA vaccine provides partial protection from acute baboon infection. *Vaccine* 2004; 22:2261-2272.
- 986. Bivas-Benita M., van Meijgaarden K.E., Franken K.L., et al: Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. *Vaccine* 2004; 22:1609-1615.
- 987. Xin K.Q., Hamajima K., Sasaki S., et al: Intranasal administration of human immunodeficiency virus type-1 (HIV-1) DNA vaccine with interleukin-2 expression plasmid enhances cell-mediated immunity against HIV-1. *Immunology* 1998; 94:438-444.
- 988. Okada E., Sasaki S., Ishii N., et al: Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens. *J Immunol* 1997; 159:3638-3647.
- 989. Tadokoro K., Koizumi Y., Miyagi Y., et al: Rapid and wide-reaching delivery of HIV-1 env DNA vaccine by intranasal administration. *Viral Immunol* 2001; 14:159-167.

- 990. Okuda K., Ihata A., Watabe S., et al: Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene. *Vaccine* 2001; 19:3681-3691.
- 991. Svanholm C., Bandholtz L., Castanos-Velez E., et al: Protective DNA immunization against Chlamydia pneumoniae. *Scand J Immunol* 2000; 51:345-353.
- 992. Wang X., Hone D.M., Haddad A., et al: M cell DNA vaccination for CTL immunity to HIV. J Immunol 2003; 171:4717-4725.
- 993. D'Souza S., Rosseels V., Denis O., et al: Improved tuberculosis DNA vaccines by formulation in cationic lipids. *Infect Immun* 2002; 70:3681-3688.
- 994. Kodama S., Hirano T., Noda K., et al: Nasal immunization with plasmid DNA encoding P6 protein and immunostimulatory complexes elicits nontypeable Haemophilus influenzae-specific long-term mucosal immune responses in the nasopharynx. *Vaccine* 2011; 29:1881-1890.
- Kuklin N., Daheshia M., Karem K., et al: Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 1997; 71:3138-3145.
- 996. Vecino W.H., Morin P.M., Agha R., et al: Mucosal DNA vaccination with highly attenuated Shigella is superior to attenuated Salmonella and comparable to intramuscular DNA vaccination for T cells against HIV. *Immunol Lett* 2002; 82:197-204.
- 997. Fennelly G.J., Khan S.A., Abadi M.A., et al: Mucosal DNA vaccine immunization against measles with a highly attenuated Shigella flexneri vector. *J Immunol* 1999; 162:1603-1610.
- 998. Shata M.T., Hone D.M.: Vaccination with a Shigella DNA vaccine vector induces antigen-specific CD8(+) T cells and antiviral protective immunity. *J Virol* 2001; 75:9665-9670.
- 999. Xu F., Hong M., Ulmer J.B.: Immunogenicity of an HIV-1 gag DNA vaccine carried by attenuated Shigella. *Vaccine* 2003; 21:644-648.
- 1000. Pasetti M.F., Barry E.M., Losonsky G., et al: Attenuated Salmonella enterica serovar Typhi and Shigella flexneri 2a strains mucosally deliver DNA vaccines encoding measles virus hemagglutinin, inducing specific immune responses and protection in cotton rats. J Virol 2003; 77:5209-5217.
- 1001. Hamajima K., Kojima Y., Matsui K., et al: Chitin Micro-Particles (CMP): a useful adjuvant for inducing viral specific immunity when delivered intranasally with an HIV-DNA vaccine. *Viral Immunol* 2003; 16:541-547.
- 1002. Singh M., Vajdy M., Gardner J., et al: Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. *Vaccine* 2001; 20:594-602.
- 1003. Cusi M.G., Zurbriggen R., Valassina M., et al: Intranasal immunization with mumps virus DNA vaccine delivered by influenza virosomes elicits mucosal and systemic immunity. *Virology* 2000; 277:111-118.
- 1004. Wong J.P., Zabielski M.A., Schmaltz F.L., et al: DNA vaccination against respiratory influenza virus infection. Vaccine 2001; 19:2461-2467.
- 1005. Yang X., Yuan X., Cai D., et al: Low molecular weight chitosan in DNA vaccine delivery via mucosa. Int J Pharm 2009; 375:123-132
- 1006. Hall M.A., Stroop S.D., Hu M.C., et al: Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. *Infect Immun* 2004; 72:2507-2512.
- 1007. Childers N.K., Tong G., Mitchell S., et al: A controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes on induction of immune responses. *Infect Immun* 1999; 67:618-623.
- 1008. de Jonge M.I., Hamstra H.J., Jiskoot W., et al: Intranasal immunisation of mice with liposomes containing recombinant meningococcal OpaB and OpaJ proteins. *Vaccine* 2004; 22:4021-4028.
- 1009. VanCott T.C., Kaminski R.W., Mascola J.R., et al: HIV-1 neutralizing antibodies in the genital and respiratory tracts of mice intranasally immunized with oligomeric gp160. *J Immunol* 1998; 160:2000-2012.
- 1010. Yao Q.: Enhancement of mucosal immune responses by chimeric influenza HA/SHIV virus-like particles. *Res Initiat Treat Action* 2003; 8:20-21.
- 1011. Galarza J.M., Latham T., Cupo A.: Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. *Viral Immunol* 2005; 18:365-372.
- 1012. Perrone L.A., Ahmad A., Veguilla V., et al: Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. *J Virol* 2009; 83:5726-5734.
- 1013. Gluck R., Burri K.G., Metcalfe I.: Adjuvant and antigen delivery properties of virosomes. Curr Drug Deliv 2005; 2:395-400.
- 1014. Huckriede A., Bungener L., Stegmann T., et al: The virosome concept for influenza vaccines. Vaccine 2005; 23(Suppl. 1):S26-S38.
- 1015. Cusi M.G., Del Vecchio M.T., Terrosi C., et al: Immune-reconstituted influenza virosome containing CD40L gene enhances the immunological and protective activity of a carcinoembryonic antigen anticancer vaccine. *J Immunol* 2005; 174:7210-7216.
- 1016. Sjölander A., Cox J.C., Barr I.G.: ISCOMs: an adjuvant with multiple functions. J Leukoc Biol 1998; 64:713-723.
- 1017. Helgeby A., Robson N.C., Donachie A.M., et al: The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. *J Immunol* 2006; 176:3697-3706.
- 1018. Hu K.F., Ekstrom J., Merza M., et al: Induction of antibody responses in the common mucosal immune system by respiratory syncytial virus immunostimulating complexes. *Med Microbiol Immunol* 1999; 197:191-198.
- 1019. Abusugra I., Morein B.: ISCOM is an efficient mucosal delivery system for Mycoplasma mycoides subsp. Mycoides (MmmSC) antigens including high mucosal and systemic antibody responses. FEMS Immunol Med Microbiol 1999; 23:5-12.

- 1020. Andersen C.S., Dietrich J., Agger E.M., et al: The combined CTA1-DD/ISCOMs vector is an effective intranasal adjuvant for boosting prior BCG immunity to Mycobacterium tuberculosis. *Infect Immun* 2006; 75:408-416.
- 1021. Aguila A., Donachie A.M., Peyre M., et al: Induction of protective and mucosal immunity against diphtheria by a immune stimulating complex (ISCOMS) based vaccine. *Vaccine* 2006; 24:5201-5210.
- 1022. Hagglund S., Hu K.F., Larsen L.E., et al: Bovine respiratory syncytial virus ISCOMs-protection in the presence of maternal antibodies. *Vaccine* 2004; 23:646-655.
- 1023. Davis S.S., Illum L.: Absorption enhancers for nasal drug delivery. Clin Pharm 2003; 42:1107-1128.
- 1024. Koping-Hoggard M., Sanchez A., Alonso M.J.: Nanoparticles as carriers for nasal vaccine delivery. *Expert Rev Vaccines* 2005; 4:185-196.
- 1025. Vajdy M., O'Hagan D.T.: Microparticles for intranasal immunization. Adv Drug Deliv Rev 2001; 51:127-141.
- 1026. Van der Lubben I.M., Verhoef J.C., Borchard G., et al: Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001; 52:139-144.
- 1027. Jaganathan K.S., Vyas S.P.: Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. *Vaccine* 2006; 24:4201-4211.
- 1028. Byrd W., Cassels F.J.: Intranasal immunization of BALB/c mice with enterotoxigenic Escherichia coli colonization factor CS6 encapsulated in biodegradable poly(DL-lactide-co-glycolide) microspheres. *Vaccine* 2006; 24:1359-1366.
- 1029. Kang M.L., Kang S.G., Jiang H.L., et al: In vivo induction of mucosal immune responses by intranasal administration of chitosan microspheres containing Bordetella bronchiseptica DNT. *Eur J Pharm Biopharm* 2006; 63:215-220.
- 1030. Carcaboso A.M., Hernandez R.M., Igartua M., et al: Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. *Vaccine* 2004; 22:1423-1432.
- 1031. Hasegawa H., Ichinohe T., Strong P., et al: Protection against influenza virus infection by intranasal administration of hemagglutinin vaccine with chitin microparticles as an adjuvant. *J Med Virol* 2005; 75:130-136.
- 1032. Amidi M., Pellikaan H.C., Hirschberg H., et al: Diphtheria toxoid-containing microparticulate powder formulations for pulmonary vaccination: preparation, characterization and evaluation in guinea pigs. *Vaccine* 2007; 25:6818-6829.
- 1033. LiCalsi C., Maniaci M.J., Christensen T., et al: A powder formulation of measles vaccine for aerosol delivery. *Vaccine* 2001; 19:2629-2636.
- 1034. Smith J.D., Bot S., Dellamary L., et al: Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. *Vaccine* 2003; 21:2805-2812.
- 1035. de Swart R., LiCalsi C., Quirk A.V., et al: Measles vaccination of macaques by dry powder inhalation. Vaccine 2007; 25:1183-1190.
- 1036. Ohtake S., Martin R.A., Yee L., et al: Heat-stable measles vaccine produced by spray drying. Vaccine 2010; 28:1275-1284.
- 1037. Grand Challenges in Global Health. Needle free delivery of stable, respirable powder vaccine. www.grandchallenges.org/ImproveVaccines/Challenges/NeedleFreeDelivery/Pages/respirablepowder.aspx
- 1038. Grand Challenges in Global Health. Robert Sievers: Developing a dried powder inhalant vaccine. www.grandchallenges.org/Pages/VideoGalleries.aspx?vID=14
- 1039. Sievers RE. (principal investigator). Grand challenges in global health: needle-free delivery of stable respirable powder vaccine. Colorado: Aktiv-Dry LLC; www.grandchallenges.org/ImproveVaccines/Challenges/NeedleFreeDelivery/Pages/respirablepowder.aspx [accessed 08.03.12].
- 1040. Sievers R.E., Quinn B.P., Cape S.P., et al: Near-critical Fluid Micronization of Stabilized Vaccines, Antibiotics, and Anti-virals. 8th Conference on Supercritical Fluids and Their Applications, May 28–31, 2006. Ischia, Italy
- 1041. McAdams D.H., Cape S.P., Burger J.L., et al: *Myo-inositol as a stabilizing excipient for inhaled dry aerosol vaccines and pharmaceuticals*. Lisbon, Portugal, Respiratory Drug Delivery, 19 May, 2009. (abstract presentation). Corresponding author: Robert E. Sievers Bob.Sievers@colorado.edu
- 1042. Godin CS, Krause E, Griffin D, et al. Safety and immunogenecity of measles vaccine dry powder in rhesus monkeys. Presented at American College of Toxicology meeting 2010, November 7–10, Baltimore, MD. Corresponding author: Robert E. Sievers, <u>Bob.Sievers@colorado.edu</u>
- 1043. Amorij J.P., Saluja V., Petersen A.H., et al: Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. *Vaccine* 2007; 25:8707-8717.
- 1044. Audouy S.A., van der Schaaf G., Hinrichs W.L., et al: Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization. *Vaccine* 2011; 29:4345-4352.
- 1045. Jin T.H., Tsao E., Goudsmit J., et al: Stabilizing formulations for inhalable powders of an adenovirus 35-vectored tuberculosis (TB) vaccine (AERAS-402). *Vaccine* 2010; 28:4369-4375.
- 1046. Muttil P.C., Prego C., Garcia-Contreras L., et al: Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. *AAPS J* 2010; 12:330-337.
- 1047. Velasquez L.S., Shira S., Berta A.N., et al: Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. *Vaccine* 2011; 29:5221-5523.
- 1048. Jiang G., Joshi S.B., Peek L.J., et al: Anthrax vaccine powder formulations for nasal mucosal delivery. J Pharm Sci 2006; 95:80-96.
- 1049. Huang J., Mikszta J.A., Ferriter M.S., et al: Intranasal administration of dry powder anthrax vaccine provides protection against lethal aerosol spore challenge. *Hum Vaccin* 2007; 3:90-93.

- 1050. Huang J., D'Souza A.J., Alarcon J.B., et al: Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine. *Clin Vaccine Immunol* 2009; 16:719-725.
- 1051. Yuki Y., Kiyono H.: New generation of mucosal adjuvants for the induction of protective immunity. Rev Med Virol 2003; 13:293-310.
- 1052. Eriksson K., Holmgren J.: Recent advances in mucosal vaccines and adjuvants. Curr Opin Immunol 2002; 14:666-672.
- 1053. Moyle P.M., McGeary R.P., Blanchfield J.T., et al: Mucosal immunization: adjuvants and delivery systems. *Curr Drug Deliv* 2004; 1:385-396.
- 1054. Cox E., Verdonck F., Vanrompay D., et al: Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. *Vet Res* 2006; 37:511-539.
- 1055. Holmgren J., Czerkinsky C., Eriksson K., et al: Mucosal immunization and adjuvants: a brief overview of recent advances and challenges. *Vaccine* 2003; 21(Suppl. 2):S89-S95.
- 1056. Hamouda T., Sutcliffe J.A., Ciotti S., et al: Intranasal immunization of ferrets with commercial trivalent influenza vaccines formulated in a nanoemulsion-based adjuvant. *Clin Vaccine Immunol* 2011; 18:1167-1175.
- 1057. Hernandez H.M., Figueredo M., Garrido N., et al: Intranasal immunisation with a 62 kDa proteinase combined with cholera toxin or CpG adjuvant protects against Trichomonas vaginalis genital tract infections in mice. *Int J Parasitol* 2005; 35:1333-1337.
- 1058. Hickey D.K., Jones R.C., Bao S., et al: Intranasal immunization with C. muridarum major outer membrane protein (MOMP) and cholera toxin elicits local production of neutralizing IgA in the prostate. *Vaccine* 2004; 22:4306-4315.
- 1059. Teloni R., von Hunolstein C., Mariotti S., et al: Antibody classes and subclasses induced by mucosal immunization of mice with Streptococcus pyogenes M6 protein and oligodeoxynucleotides containing CpG motifs. *Indian J Med Res* 2004; 119:126-130.
- 1060. Arakawa T., Tsuboi T., Kishimoto A., et al: Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. *Vaccine* 2003; 21:3143-3148.
- 1061. Bowe F., Lavelle E.C., McNeela E.A., et al: Mucosal vaccination against serogroup B meningococci: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitidis and mutants of Escherichia coli heat-labile enterotoxin. *Infect Immun* 2004; 72:4052-4060.
- 1062. Erume J., Partidos H.: Evaluation of the adjuvant effect of Escherichia coli heat-labile enterotoxin mutant (LTK63) on the systemic immune responses to intranasally co-administered measles virus nucleoprotein, part I: antibody responses. Afr Health Sci 2001; 1:3-8.
- 1063. National Institute of Allergy and Infectious Diseases. Safety evaluation of toxin adjuvants delivered intranasally. www.niaid.nih.gov/topics/entericDiseases/Documents/intranasal.pdf; [accessed 31.10.11].
- 1064. Pimenta F.C., Miyaji E.N., Areas A.P., et al: Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. *Infect Immun* 2006; 74:4939-4944.
- 1065. Olive C., Sun H.K., Ho M.F., et al: Intranasal administration is an effective mucosal vaccine delivery route for self-adjuvanting lipid core peptides targeting the group a streptococcal m protein. *J Infect Dis* 2006; 194:316-324.
- 1066. Dell K., Koesters R., Linnebacher M., et al: Intranasal immunization with human papillomavirus type 16 capsomeres in the presence of non-toxic cholera toxin-based adjuvants elicits increased vaginal immunoglobulin levels. *Vaccine* 2006; 24:2238-2247.
- 1067. Price G.A., Russell M.W., Cornelissen C.N.: Intranasal administration of recombinant Neisseria gonorrhoeae transferrin binding proteins A and B conjugated to the cholera toxin B subunit induces systemic and vaginal antibodies in mice. *Infect Immun* 2005; 73:3945-3953.
- 1068. Areas A.P., Oliveira M.L., Miyaji E.N., et al: Expression and characterization of cholera toxin B-pneumococcal surface adhesin A fusion protein in Escherichia coli: ability of CTB-PsaA to induce humoral immune response in mice. *Biochem Biophys Res Commun* 2004; 321:192-196.
- 1069. Larsson C., Holmgren J., Lindahl G., et al: Intranasal immunization of mice with group B streptococcal protein Rib and cholera toxin B subunit confers protection against lethal infection. *Infect Immun* 2004; 72:1184-1187.
- 1070. Zhang P., Yang Q.B., Marciani D.J., et al: Effectiveness of the quillaja saponin semi-synthetic analog GPI-0100 in potentiating mucosal and systemic responses to recombinant HagB from Porphyromonas gingivalis. *Vaccine* 2003; 21:4459-4471.
- 1071. Kang S.M., Yao Q., Guo L., et al: Mucosal immunization with virus-like particles of simian immunodeficiency virus conjugated with cholera toxin subunit B. *J Virol* 2003; 77:9823-9830.
- 1072. Yasuda Y., Isaka M., Taniguchi T., et al: Frequent nasal administrations of recombinant cholera toxin B subunit (rCTB)-containing tetanus and diphtheria toxoid vaccines induced antigen-specific serum and mucosal immune responses in the presence of anti-rCTB antibodies. *Vaccine* 2003; 21:2954-2963.
- 1073. Singh S.R., Hulett K., Pillai S.R., et al: Mucosal immunization with recombinant MOMP genetically linked with modified cholera toxin confers protection against Chlamydia trachomatis infection. *Vaccine* 2006; 24:1213-1224.
- 1074. Yoshino N., Lu F.X., Fujihashi K., et al: A novel adjuvant for mucosal immunity to HIV-1 gp120 in nonhuman primates. *J Immunol* 2004; 173:6850-6857.
- 1075. Egan M.A., Chong S.Y., Hagen M., et al: A comparative evaluation of nasal and parenteral vaccine adjuvants to elicit systemic and mucosal HIV-1 peptide-specific humoral immune responses in cynomolgus macaques. *Vaccine* 2004; 22:3774-3788.
- 1076. De Filette M., Fiers W., Martens W., et al: Improved design and intranasal delivery of an M2e-based human influenza A vaccine. *Vaccine* 2006; 24:6597-6601.

- 1077. Akhiani A.A., Stensson A., Schon K., et al: The nontoxic CTA1-DD adjuvant enhances protective immunity against Helicobacter pylori infection following mucosal immunization. *Scand J Immunol* 2006; 63:97-105.
- 1078. Stephenson I., Zambon M.C., Rudin A., et al: Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J Virol 2006; 80:4962-4970.
- 1079. Baudner B.C., Verhoef J.C., Giuliani M.M., et al: Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. *J Drug Target* 2005; 13:489-498.
- 1080. Kende M., Del Giudice G., Rivera N., et al: Enhancement of intranasal vaccination in mice with deglycosylated chain A ricin by LTR72, a novel mucosal adjuvant. *Vaccine* 2006; 24:2213-2221.
- 1081. Baudner B.C., Giuliani M.M., Verhoef J.C., et al: The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. *Vaccine* 2003; 21:3837-3844.
- 1082. Eriksson A.M., Schon K.M., Lyke N.Y.: The cholera toxin-derived CTA1-DD vaccine adjuvant administered intranasally does not cause inflammation or accumulate in the nervous tissues. *J Immunol* 2004; 173:3310-3319.
- 1083. Etchart N., Baaten B., Andersen S.R., et al: Intranasal immunisation with inactivated RSV and bacterial adjuvants induces mucosal protection and abrogates eosinophilia upon challenge. *Eur J Immunol* 2006; 36:1068-1069.
- 1084. Treanor J., Nolan C., O'Brien D., et al: Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects. *Vaccine* 2006; 24:254-262.
- 1085. Sardinas G., Reddin K., Pajon R., et al: Outer membrane vesicles of Neisseria lactamica as a potential mucosal adjuvant. *Vaccine* 2006; 24:206-214.
- 1086. Chabot S., Brewer A., Lowell G., et al: A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. *Vaccine* 2005; 23:1374-1383.
- 1087. Perez O., Bracho G., Lastre M., et al: Novel adjuvant based on a proteoliposome-derived cochleate structure containing native lipopolysaccharide as a pathogen-associated molecular pattern. *Immunol Cell Biol* 2004; 82:603-610.
- 1088. Jones T., Cyr S., Allard F., et al: Protollin: a novel adjuvant for intranasal vaccines. Vaccine 2004; 22:3691-3697.
- 1089. Wimer-Mackin S., Hinchcliffe M., Petrie C.R., et al: An intranasal vaccine targeting both the Bacillus anthracis toxin and bacterium provides protection against aerosol spore challenge in rabbits. *Vaccine* 2006; 24:3953-3963.
- 1090. Pinczewski J., Zhao J., Malkevitch N., et al: Enhanced immunity and protective efficacy against SIVmac251 intrarectal challenge following ad-SIV priming by multiple mucosal routes and gp120 boosting in MPL-SE. *Viral Immunol* 2005; 18:236-243.
- 1091. Borsutzky S., Ebensen T., Link C., et al: Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. *Vaccine* 2006; 24:2049-2056.
- 1092. Honko A.N., Sriranganathan N., Lees C.J., et al: Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. *Infect Immun* 2006; 74:1113-1120.
- 1093. Lee S.E., Kim S.Y., Jeong B.C., et al: A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. *Infect Immun* 2006; 74:694-702.
- 1094. Lowell G.H., Burt D., White G.: Proteosome technology for vaccines and adjuvants. In: Levine M.M., Kaper J.B., Rappuoli R., et al ed. New Generation Vaccines, 3rd ed. New York: Marcel Dekker; 2004:271-283.
- 1095. Romeu B., Gonzalez E., Del Campo J., et al: Mucosal and systemic immune responses of mice to tetanus toxoid coadministered nasally with AFCo1. *Can J Microbiol* 2011; 57:256-261.
- 1096. Tafaghodi M., Jaafari M.R., Sajadi Tabassi S.A.: Nasal immunization studies using liposomes loaded with tetanus toxoid and CpG-ODN. *Eur J Pharm Biopharm* 2006; 64:138-145.
- 1097. Agger E.M., Rosenkrands I., Olsen A.W., et al: Protective immunity to tuberculosis with Ag85B-ESAT-6 in a synthetic cationic adjuvant system IC31. *Vaccine* 2006; 24:5452-5460.
- 1098. Kodama S., Abe N., Hirano T., et al: Safety and efficacy of nasal application of CpG oligodeoxynucleotide as a mucosal adjuvant. *Laryngoscope* 2006; 116:331-335.
- 1099. Shi T., Liu W.Z., Gao F., et al: Intranasal CpG-oligodeoxynucleotide is a potent adjuvant of vaccine against Helicobacter pylori, and T helper 1 type response and interferon-gamma correlate with the protection. *Helicobacter* 2005; 10:71-79.
- 1100. Abe N., Kodama S., Hirano T., et al: Nasal vaccination with CpG oligodeoxynucleotide induces protective immunity against non-typeable Haemophilus influenzae in the nasopharynx. *Laryngoscope* 2006; 116:407-412.
- 1101. Pun P.B., Bhat A.A., Mohan T., et al: Intranasal administration of peptide antigens of HIV with mucosal adjuvant CpG ODN coentrapped in microparticles enhances the mucosal and systemic immune responses. *Int Immunopharmacol* 2009; 9:468-477.
- 1102. Heikenwalder M., Polymenidou M., Junt T., et al: Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. *Nat Med* 2004; 10:187-192.
- 1103. Wozniak T.M., Ryan A.A., Triccas J.A., et al: Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. *Infect Immun* 2006; 74:557-565.
- 1104. Bermudez-Humaran L.G., Cortes-Perez N.G., Lefevre F., et al: A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. *J Immunol* 2005; 175:7297-7302.

- 1105. Toka F.N., Rouse B.T.: Mucosal application of plasmid-encoded IL-15 sustains a highly protective anti-Herpes simplex virus immunity. *J Leukoc Biol* 2005; 78:178-186.
- 1106. Lynch J.M., Briles D.E., Metzger D.W.: Increased protection against pneumococcal disease by mucosal administration of conjugate vaccine plus interleukin-12. *Infect Immun* 2003; 71:4780-4788.
- 1107. Lee S., Gierynska M., Eo S.K., et al: Influence of DNA encoding cytokines on systemic and mucosal immunity following genetic vaccination against herpes simplex virus. *Microbes Infect* 2003; 5:571-578.
- 1108. Boyaka P.N., McGhee J.R.: Cytokines as adjuvants for the induction of mucosal immunity. Adv Drug Deliv Rev 2001; 51:71-79.
- 1109. Bracci L., Canini I., Venditti M., et al: Type I IFN as a vaccine adjuvant for both systemic and mucosal vaccination against influenza virus. *Vaccine* 2006; 24(Suppl. 2):56-57.
- 1110. Gwinn W.M., Kirwan S.M., Wang S.H., et al: Effective induction of protective systemic immunity with nasally administered vaccines adjuvanted with IL-1. *Vaccine* 2010; 28:6901-6914.
- 1111. Illum L.: Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15:1326-1331.
- 1112. Illum L., Jabbal-Gill I., Hinchcliffe M., et al: Chitosan as a novel nasal delivery system for vaccines. *Adv Drug Deliv Rev* 2001; 51:81-96.
- 1113. McNeela E.A., Jabbal-Gill I., Illum L., et al: Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan. *Vaccine* 2004; 22:909-914.
- 1114. Sasaki S., Sumino K., Hamajima K., et al: Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. *J Virol* 1998; 72:4931-4939.
- 1115. Eliasson D., Helgeby G.A., Schon K., et al: A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. *Vaccine* 2011; 29:3951-3961.
- 1116. Hodgins D.C., Yuan L., Parreno V., et al: *Mucosal veterinary vaccines: comparative vaccinology*. In: Mestecky J., Bienenstock J., Lamm M.E., et al ed. *Mucosal Immunology*, Burlington, MA: Elsevier, 2005:1085-1107.
- 1117. Sharma J.M.: Introduction to poultry vaccines and immunity. Adv Vet Med 1999; 41:481-494.
- 1118. Flick-Smith H.C., Eyles J.E., Hebdon R., et al: Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. *Infect Immun* 2002; 70:2022-2028.
- 1119. Bukreyev A., Rollin P.E., Tate M.K., et al: Successful topical respiratory tract immunization of primates against Ebola virus. *J Virol* 2007; 81:6379-6388.
- 1120. Ulrich L.R., Amemiya K., Waag M.D., et al: Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. *Vaccine* 2005; 23:1986-1992.
- 1121. Lowell G.H., Kaminski W.R., Grate S., et al: Intranasal and intramuscular proteosome- staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. *Infect Immun* 1996; 64:1706-1713.
- 1122. Eigelsbach H.T., Tulis J., Overholt E.L., et al: Aerogenic immunization of the monkey and guinea pig with live tularemia vaccine. *Proc Soc Exp Biol Med* 1961; 108:732-734.
- 1123. Baron S.D., Singh R., Metzger D.W.: Inactivated Francisella tularensis live vaccine strain protects against respiratory tularemia by intranasal vaccination in an immunoglobulin A-dependent fashion. *Infect Immun* 2007; 75:2052-2162.
- 1124. Hornick R.B., Eigelsbach H.T.: Aerogenic immunization of man with live tularemia vaccine. Bacteriol Rev 1966; 30:532-538.
- 1125. Jones T., Adamovicz J.J., Cyr S.L., et al: Intranasal protollin/F1-V vaccine elicits respiratory and serum antibody responses and protects mice against lethal aerosolized plague infection. *Vaccine* 2006; 24:1625-1632.
- 1126. Luo F., Feng Y., Liu M., et al: Type IVB pilus operon promoter controlling expression of the severe acute respiratory syndrome-associated coronavirus nucleocapsid gene in Salmonella enterica serovar Typhi elicits full immune response by intranasal vaccination. Clin Vaccine Immunol 2007; 14:990-997.
- 1127. Suguitan Jr. A.L., McAuliffe J., Mills K.L., et al: Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 2006; 3:e360.
- 1128. Yang P., Tang C., Luo D., et al: Cross-clade protection against HPAI H5N1 influenza virus challenge in BALB/c mice intranasally administered adjuvant-combined influenza vaccine. *Vet Microbiol* 2010; 146:17-23.
- 1129. Bill and Melinda Gates Foundation. Bill and Melinda Gates pledge \$10 billion in call for Decade of Vaccines. (press release). www.gatesfoundation.org/press-releases/Pages/decade-of-vaccines-wec-announcement-100129.aspx